964 resultados para rocky reef
Resumo:
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Ten strains identified as marine actinomycetes related to the 'Salinospora ' group previously reported only from marine sediments were isolated from the Great Barrier Reef marine sponge Pseudoceratina clavata. The relationship of the isolates to 'Salinospora' was confirmed by phylogenetic analysis of 16S rRNA gene sequences. Colony morphology and pigmentation, occurrence and position of spores, and salinity requirements for growth were all consistent with this relationship. Genes homologous to beta-ketosynthase, an enzyme forming part of a polyketide synthesis complex, were retrieved from these isolates; these genes shared homology with other Type I ketosynthase genes, and phylogenetic comparison with amino acid sequences derived from database beta-ketosynthase genes was consistent with the close relationship of these isolates to the actinomycetes. Primers based on 16S rRNA gene sequences and designed for targeting amplification of members of the 'Salinospora' group via polymerase chain reaction have been used to demonstrate occurrence of these actinomycetes within the sponge tissue. In vitro bioassays of extracts from the isolates for antibiotic activity demonstrated that these actinomycetes have the potential to inhibit other sponge symbionts in vivo, including both Gram-negative and Gram-positive bacteria.
Resumo:
Prosorhynchoides apogonis n. sp. (Digenea: Bucephalidae) is described from the intestine of the apogonid Cheilodipterus macrodon on the southern Great Barrier Reef, Australia. The new species is differentiated from other species of Prosorhynchoides Dollfus, 1929 by the configuration of its digestive system, shape and distribution of its vitelline follicles, and the shape and extent of its uterus. This is the first bucephalid to be described from the teleost family Apogonidae, and our records suggest that this species is strongly host-specific, at least to the genus Cheilodipterus. The host family is consistent with the pattern of Prosorhynchoides being reported from a very wide range of piscivorous fish families. As a result of comparisons made in the description of this species, 18 species formerly included in Bucephaloides Hopkins, 1954, Bucephalopsis Diesing, 1855 and Neobucephalopsis Dayal, 1948 are transferred to Prosorhynchoides, 16 as new combinations and two as replacement names to prevent secondary homonymy.
Resumo:
Cultures of Trichodesmium from the Northern and Southern Great Barrier Reef Lagoon (GBRL) have been established in enriched seawater and artificial seawater media. Some cultures have been maintained with active growth for over 6 years. Actively growing cultures in an artificial seawater medium containing organic phosphorus (glycerophosphate) as the principal source of phosphorus have also been established. Key factors that contributed to the successful establishment of cultures were firstly, the seed samples were collected from depth, secondly, samples were thoroughly washed and thirdly, incubations were conducted under relatively low light intensities (PAR similar to 40-50 mumol quanta m(-2) s(-1)). N-2 fixation rates of the cultured Trichodesmium were found to be similar to those measured in the GBRL. Specific growth rates of the cultures during the exponential growth phase in all enriched media were in the range 0.2-0.3 day(-1) and growth during this phase was characterised by individual trichomes (filaments) or small aggregations of two to three trichomes. Characteristic bundle formation tended to occur following the exponential growth phase, which suggests that the bundle formation was induced by a lack of a necessary nutrient e.g. Fe. Results from some exploratory studies showed that filament-dominated cultures of Trichodesmium grew over a range of relatively low irradiances (PAR similar to 5-120 mumol quanta m(-2) s(-1)) with the maximum growth occurring at - 40-50 mumol quanta m(-2) s(-1). These results suggest that filaments of the tested strain are well adapted for growth at depth in marine waters. Other studies showed that growth yields were dependent on salinity, with maximum growth occurring between 30 and 37 psu. Also the cell yields decreased by an order of magnitude with the reduction of Fe additions from 450 to 45 nM. No active growth was observed with the 4.5 nM Fe addition.
Resumo:
We compared inorganic phosphate (P-i) uptake and growth kinetics of two cultures of the diazotrophic cyanobacterium Trichodesmium isolated from the North Atlantic Ocean (IMS101) and from the Great Barrier Reef, Australia (GBRTRLI101). Phosphate-limited cultures had up to six times higher maximum P-i uptake rates than P-replete cultures in both strains. For strain GBRTRLI101, cell-specific P-i uptake rates were nearly twice as high, due to larger cell size, but P-specific maximum uptake rates were similar for both isolates. Half saturation constants were 0.4 and 0.6 muM for P-i uptake and 0.1 and 0.2 muM for growth in IMS101 and GBRTRLI101, respectively. Phosphate uptake in both strains was correlated to growth rates rather than to light or temperature. The cellular phosphorus quota for both strains increased with increasing P-i up to 1.0 muM. The C:P ratios were 340-390 and N:P ratios were 40-45 for both strains under severely P-limited growth conditions, similar to reported values for natural populations from the tropical Atlantic and Pacific Oceans. The C:P and N:P ratios were near Redfield values in medium with >1.0 muM P-i. The North Atlantic strain IMS101 is better adapted to growing on P-i at low concentrations than is GBRTRLI101 from the more P-i-enriched Great Barrier Reef. However, neither strain can achieve appreciable growth at the very low (nanomolar) P-i concentrations found in most oligotrophic regimes. Phosphate could be an important source of phosphorus for Trichodesmium on the Great Barrier Reef, but populations growing in the oligotrophic open ocean must rely primarily on dissolved organic phosphorus sources.
Resumo:
The diversity of the culturable microbial communities was examined in two sponge species-Pseudoceratina clavata and Rhabdastrella globostellata. Isolates were characterized by 16S rRNA gene sequencing and phylogenetic analysis. The bacterial community structures represented in both sponges were found to be similar at the phylum level by the same four phyla in this study and also at a finer scale at the species level in both Firmicutes and Alphaproteobacteria. The majority of the Alphaproteobacteria isolates were most closely related to isolates from other sponge species including alpha proteobacterium NW001 sp. and alpha proteobacterium MBIC3368. Members of the low %G + C gram-positive (phylum Firmicutes), high %G + C gram-positive (phylum Actinobacteria), and Cytophaga-Flavobacterium-Bacteroides (phylum Bacteroidetes) phyla of domain Bacteria were also represented in both sponges. In terms of culturable organisms, taxonomic diversity of the microbial community in the two sponge species displays similar structure at phylum level. Within phyla, isolates often belonged to the same genus-level monophyletic group. Community structure and taxonomic composition in the two sponge species P. clavata and Rha. globostellata share significant features with those of other sponge species including those from widely separated geographical and climatic regions of the sea.
Resumo:
A new species, Overstreetia olsoni, is described from Atherinomorus capricornensis off Heron Island on the Great Barrier Reef off Queensland, Australia. It differs from its only known congener in that the enlarged spines of the circum-oral rows are smaller (
Resumo:
The proximity of the Great Barrier Reef (GBR) Marine Park to areas of intensive agriculture and increasing urbanisation places the park under potential threat of contamination by land-based pollutants. Passive samplers were deployed at inshore reef and river mouth sites in the Wet Tropics region of the GBR during a dry and a wet season to measure levels of land-based organic pollutants in this environment. Two types of passive sampling devices were deployed: (i) a polar sampler, which can be used to monitor polar herbicides and (ii) semipermeable membrane devices (SPMDs) which sequester more hydrophobic compounds (e.g. PAHs, chlorpyrifos). Herbicides (diuron, simazine, atrazine, hexazinone and/or flumeturon) were detected at low concentrations (ng L-1) at all sites sampled and in both seasons. Chlorpyrifos was not detected while PAHs were present in SPMDs at levels below limits of detection. The results show that the GBR environment does contain low levels of organic pollutants and that passive sampling provides a sensitive monitoring tool for measuring waterborne organic pollutants. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The abundance and community composition of the endofauna in 2 species of sponge, Haliclona sp. 1 and Haliclona sp. 2 (phylum Porifera: order Haplosclerida), were examined at different sites on the slope at Heron Island Reef, in the southern Great Barrier Reef, on 2 separate occasions. Both species of Haliclona Occupy Similar habitats on the reef slope and are often found living adjacent to each other, but the major groups of secondary metabolites and the gross external morphology in the 2 species of sponge are different. The 2 species of sponge supported significantly different endofaunal communities, with Haliclona sp. 2 Supporting 3 to 4 times more individuals than Haliclona sp. 1. Fewer demersal zooplankton (copepods), nematodes and some peracarid crustaceans were found in Haliclona sp. I compared with Haliclona sp. 2. There were also differences in the numbers of spionid, nereidid and syllid. polychaetes living in the 2 species of sponge. The only taxon that was more abundant in Haliclona sp. 1 than Haliclona sp. 2 was the spionid Polydorella prolifera, and this difference was only evident on 1. of the 2 occasions. The amount of free space (pores, channels, cavities) for a given weight of sponge was only 19% greater in Haliclona sp. 2 than in Haliclona sp. 1, suggesting other factors, such as the differences in the allelochemicals, may have a role in determining the numbers and types of animals living in these 2 species of sponge.
Resumo:
The Great Barrier Reef Marine Park, an area almost the size , of Japan, has a new network of no-take areas that significantly improves the protection of biodiversity. The new marine park zoning implements, in a quantitative manner, many of the theoretical design principles discussed in the literature. For example, the new network of no-take areas has at least 20% protection per bioregion, minimum levels of protection for all known habitats and special or unique features, and minimum sizes for no-take areas of at least 10 or 20 kat across at the smallest diameter Overall, more than 33% of the Great Barrier Reef Marine Park is now in no-take areas (previously 4.5%). The steps taken leading to this outcome were to clarify to the interested public why the existing level of protection wets inadequate; detail the conservation objectives of establishing new no-take areas; work with relevant and independent experts to define, and contribute to, the best scientific process to deliver on the objectives; describe the biodiversity (e.g., map bioregions); define operational principles needed to achieve the objectives; invite community input on all of The above; gather and layer the data gathered in round-table discussions; report the degree of achievement of principles for various options of no-take areas; and determine how to address negative impacts. Some of the key success factors in this case have global relevance and include focusing initial communication on the problem to be addressed; applying the precautionary principle; using independent experts; facilitating input to decision making; conducting extensive and participatory consultation; having an existing marine park that encompassed much of the ecosystem; having legislative power under federal law; developing high-level support; ensuring agency Priority and ownership; and being able to address the issue of displaced fishers.
Resumo:
Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.
A Site Description of the CARICOMP Mangrove, Seagrass and Coral Reef Sites in Bocas del Toro, Panama
Resumo:
Bocas del Toro is located in the western region of the Republic of Panama. It is part of a province of approximately 8917 km(2) with an estimated 68% of its area covered by tropical rainforest. The area receives 2870 mm/year of rainfall. The dry and rainy seasons are not clearly defined. There are two periods each of low and high rainfall, March and September-October, and July and December, respectively. Mangrove forests, seagrass meadows and coral reefs are vast, covering large areas in the shallow waters surrounding the islands of the archipelago and along the mainland coast. The CARICOMP sites were established in 1998-99 and are periodically monitored following Level I protocol. Herein we describe the sites in a regional context and present the baseline data for each site. This paper fulfills the requirements of the formal site description for CARICOMP monitoring sites.
Resumo:
Adaptive management is the pathway to effective conservation, use and management of Australia’s coastal catchments and waterways. While the concepts of adaptive management are not new, applications involving both assessment and management responses are indeed limited at the national and regional scales. This paper outlines the components of a systematic framework for linking scientific knowledge, existing tools, planning approaches and participatory processes to achieve healthy regional partnerships between community, industry, government agencies and science providers to overcome institutional barriers and uncoordinated monitoring. The framework developed by the Coastal CRC (www.coastal.crc.org.au/amf/amf_index.htm) is hierarchical in the way it displays information to allow associated frameworks to be integrated, and represents a construct in which processes, information, decision tools and outcomes are brought together in a structured and transparent way for adaptive catchment and coastal management. This paper proposes how an adaptive management approach could be used to benefit the implementation of the Reef Water Quality Protection Plan (RWQPP).
Resumo:
Pre-settlement events play an important role in determining larval success in marine invertebrates with bentho-pelagic life histories, yet the consequences of these events typically are not well understood. The purpose of this study was to examine the pre-settlement impacts of different seawater temperatures on the size and population density of dinoflagellate symbionts in brooded larvae of the Caribbean coral Porites astreoides. Larvae were collected from P. astreoides at 14-20 m depth on Conch Reef (Florida) in June 2002, and incubated for 24 h at 15 temperatures spanning the range 25.1 degrees-30.0 degrees C in mean increments of 0.4 +/- 0.1 degrees C (+/- SD). The most striking feature of the larval responses was the magnitude of change in both parameters across this 5 degrees C temperature range within 24 h. In general, larvae were largest and had the highest population densities of Symbiodinium sp. between 26.4 degrees-27.7 degrees C, and were smallest and had the lowest population densities at 25.8 degrees C and 28.8 degrees C. Larval size and symbiont population density were elevated slightly (relative to the minimal values) at the temperature extremes of 25.1 degrees C and 30 degrees C. These data demonstrate that coral larvae are highly sensitive to seawater temperature during their pelagic phase, and respond through changes in size and the population densities of Symbiodinium sp. to ecologically relevant temperature signals within 24 h. The extent to which these changes are biologically meaningful will depend on the duration and frequency of exposure of coral larvae to spatio-temporal variability in seawater temperature, and whether the responses have cascading effects on larval success and their entry to the post-settlement and recruitment phase.