982 resultados para roads
Resumo:
The implementation of pavement management seems to ignore road safety, with its focus being mainly on infrastructure condition. Safety management as part of pavement management should consider various means of reducing the frequency of vehicle crashes by allocating corrective measures to mitigate accident exposure, as well as reduce accident severity and likelihood. However, it is common that lack of accident records and crash contributing factors impedes incorporating safety into pavement management. This paper presents a case study for the initial development of pavement management systems considering data limitations for 3000 km of Tanzania’s national roads. A performance based optimization utilizes indices for safety and surface condition to allocate corrective measures. A modified Pareto analysis capable of accounting for annual performance and of balancing resources to achieve good surface condition and low levels of safety was applied. Tradeoff analysis for the case study found the need to assign 30% relevance to condition and 70% to road safety. Safety and condition deficiencies were corrected within 5 years with the majority of improvements dedicated to surface treatments and some geometric corrections. Large investments for correcting geometric issues were observed in years two and three if more money was made available.
Resumo:
In the coming decades the design, construction and maintenance of roads will face a range of new issues and as such will require a number of new approaches. In particular, road authorities will be required to consider and respond to a range of issues related to climate change, and associated extreme weather events, such as the extensive flooding in January 2011 in Queensland, Australia Figure 1). Coupled with diminishing access to road construction supplies (such as aggregate), water scarcity, and the potential for increases in oil and electricity prices, this range of challenges bear little resemblance to those previously faced. In Australia, state and federal authorities face further pressures given the variety of needs resulting from the country's geographical and population diversity, expansive road networks, road freight requirements and relatively small population base.
Resumo:
Although road construction and use provides significant economic and social benefits its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors both directly through fossil energy consumed in mining, transporting, earthworks, and paving work, along with in-direct emissions from road use by vehicles. This discussion paper will outline opportunities within the Australian context for reducing environmental pressure in road building and consider the future environmental impacts of road projects.
Resumo:
Green infrastructure is considered as a strategic approach to address the ecological and social impacts of urban sprawl. The main elements of green infrastructure have been well established and include a series of multifunctional ecological systems, such as green urban space, green road infrastructure and the links between these systems. However, it should be noted that the elements of green road infrastructure have only been briefly mentioned in isolated life cycle stages, e.g. design, procurement, construction, maintenance and operation. The definition of green road infrastructure and the elements in green road infrastructure projects remain largely unknown. To explore the elements in green road infrastructure, a critical review was adopted. As the development of green road infrastructure projects is guided by rating systems, a comparison of three major green roads rating systems, including GreenroadsTM, EnvisionTM and Infrastructure Sustainability Rating Tool—IS, was conducted. The comparison reveals that green roads can be defined as road projects that have superior performance in economic, social and environmental sustainability. The sustainability features in green roads mainly include environmental sustainability, social sustainability, economic sustainability, quality, pavement technology and innovation. The results will contribute to an increased understanding of green roads and will be useful to improve the performance of road projects on these sustainability features.
Resumo:
Pedestrian safety is a critical issue in Ethiopia. Reports show that 50 to 60% of traffic fatality victims in the country are pedestrians. The primary aim of this research was to examine the possible causes of and contributing factors to crashes with pedestrians in Ethiopia, and improve pedestrian safety by recommending possible countermeasures. The secondary aim was to develop appropriate pedestrian crash models for two-way two-lane rural roads and roundabouts in the capital city of Ethiopia. This research uses quantitative methods throughout the process of the investigation. The research has applied various statistical methods. The results of this research support the idea that geometric and operational features have significant influence on pedestrian safety and crashes. Accordingly, policies and strategies are needed to safeguard pedestrians in Ethiopia.
Resumo:
Monitoring pedestrian and cyclists movement is an important area of research in transport, crowd safety, urban design and human behaviour assessment areas. Media Access Control (MAC) address data has been recently used as potential information for extracting features from people’s movement. MAC addresses are unique identifiers of WiFi and Bluetooth wireless technologies in smart electronics devices such as mobile phones, laptops and tablets. The unique number of each WiFi and Bluetooth MAC address can be captured and stored by MAC address scanners. MAC addresses data in fact allows for unannounced, non-participatory, and tracking of people. The use of MAC data for tracking people has been focused recently for applying in mass events, shopping centres, airports, train stations etc. In terms of travel time estimation, setting up a scanner with a big value of antenna’s gain is usually recommended for highways and main roads to track vehicle’s movements, whereas big gains can have some drawbacks in case of pedestrian and cyclists. Pedestrian and cyclists mainly move in built distinctions and city pathways where there is significant noises from other fixed WiFi and Bluetooth. Big antenna’s gains will cover wide areas that results in scanning more samples from pedestrians and cyclists’ MAC device. However, anomalies (such fixed devices) may be captured that increase the complexity and processing time of data analysis. On the other hand, small gain antennas will have lesser anomalies in the data but at the cost of lower overall sample size of pedestrian and cyclist’s data. This paper studies the effect of antenna characteristics on MAC address data in terms of travel-time estimation for pedestrians and cyclists. The results of the empirical case study compare the effects of small and big antenna gains in order to suggest optimal set up for increasing the accuracy of pedestrians and cyclists’ travel-time estimation.
Resumo:
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard-based models to develop in-depth insights into how the crash-specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, have been compared to random parameter AFT structures in terms of goodness of fit to the duration data and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway exhibits durations that are on average 19% shorter compared to the durations on motorway. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that, looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.
Resumo:
BACKGROUND The workgroup of Traffic Psychology is concerned with the social, behavioral, and perceptual aspects that are associated with use and non-use of bicycle helmets, in their various forms and under various cycling conditions. OBJECTIVES The objectives of WG2 are to (1) share current knowledge among the people already working in the field, (2) suggest new ideas for research on and evaluation of the design of bicycle helmets, and (3) discuss options for funding of such research within the individual frameworks of the participants. Areas for research include 3.1. The patterns of use of helmets among different users: children, adults, and sports enthusiasts. 3.2. The use of helmets in different environments: rural roads, urban streets, and bike trails. 3.3. Concerns bicyclists have relative to their safety and convenience and the perceived impact of using helmets on comfort and convenience. 3.4. The benefit of helmets for enhancing visibility, and how variations in helmet design and colors affect daytime, nighttime, and dusktime visibility. 3.5. The role of helmets in the acceptance of city-wide pickup-and-drop-off bicycles. 3.6. The impact of helmets on visual search behaviour of bicyclists.
Resumo:
Crashes at any particular transport network location consist of a chain of events arising from a multitude of potential causes and/or contributing factors whose nature is likely to reflect geometric characteristics of the road, spatial effects of the surrounding environment, and human behavioural factors. It is postulated that these potential contributing factors do not arise from the same underlying risk process, and thus should be explicitly modelled and understood. The state of the practice in road safety network management applies a safety performance function that represents a single risk process to explain crash variability across network sites. This study aims to elucidate the importance of differentiating among various underlying risk processes contributing to the observed crash count at any particular network location. To demonstrate the principle of this theoretical and corresponding methodological approach, the study explores engineering (e.g. segment length, speed limit) and unobserved spatial factors (e.g. climatic factors, presence of schools) as two explicit sources of crash contributing factors. A Bayesian Latent Class (BLC) analysis is used to explore these two sources and to incorporate prior information about their contribution to crash occurrence. The methodology is applied to the state controlled roads in Queensland, Australia and the results are compared with the traditional Negative Binomial (NB) model. A comparison of goodness of fit measures indicates that the model with a double risk process outperforms the single risk process NB model, and thus indicating the need for further research to capture all the three crash generation processes into the SPFs.
Resumo:
Young drivers represent approximately 20% of the Omani population, yet account for over one third of crash injuries and fatalities on Oman's roads. Internationally, research has demonstrated that social influences play an important role within young driver safety, however, there is little research examining this within Arab gulf countries. This study sought to explore young driver behaviour using Akers' social learning theory. A self-report survey was conducted by 1319 (72.9% male and 27.1% female) young drivers aged 17-25 years. A hierarchical regression model was used to investigate the contribution of social learning variables (norms and behaviour of significant others, personal attitudes towards risky behaviour, imitation of significant others, beliefs about the rewards and punishments offered by risky behaviour), socio-demographic characteristics (age and gender), driving experience (initial training, time driving and previous driving without supervision) and sensitivity to rewards and punishments upon the self-reported risky driving behaviours of young drivers. It was found that 39.6% of the young drivers reported that they have been involved in at least one crash since the issuance of their driving licence and they were considered ‘at fault’ in 60.7% of these crashes. The hierarchical multiple regression models revealed that socio-demographic characteristics and driving experience alone explained 14.2% of the variance in risky driving behaviour. By introducing social learning factors into the model a further 37.0% of variance was explained. Finally, 7.9% of the variance in risky behaviour could be explained by including individual sensitivity to rewards and punishments. These findings and the implications are discussed.
Resumo:
Alcohol is a major factor in road deaths and serious injuries. In Victoria, between 2008 and 2013, 30% of drivers killed were involved in alcohol-related crashes. From the early 1980s Victoria progressively introduced a series of measures, such as driver licence cancellation and alcohol interlocks, to reduce the level of drink-driving on Victoria's roads. This project tracked drink-driving offenders to measure and understand their re-offence and road trauma involvement levels during and after periods of licensing and driving interventions. The methodology controlled for exposure by aggregating crashes and traffic violations within relevant categories (e.g. licence cancelled/relicensed/relicensing not sought) and calculated as rates 'per thousand person-years'. Inferential statistical techniques were used to compare crash and offence rates between control and treatment groups across three distinct time periods, which coincided with the introduction of new interventions. This paper focuses on the extent to which the Victorian drink-driving measures have been successful in reducing re-offending and road trauma involvement during and after periods of licence interventions. It was found that a licence cancellation/ban is an effective drink-driving countermeasure as it reduced drink-driving offending and drink-driving crashes. Interlocks also had a positive effect on drink-driving offences as they were reduced during the interlock period as well as for the entire intervention period. Possible drink-driving policy implications are briefly discussed.
Resumo:
Electric-motored personal mobility devices (PMDs) are appearing on Australian roads. While legal to import and own, their use is typically illegal for adult riders within the road transport system. However, these devices could provide an answer to traffic congestion by getting people out of cars for short trips (“first-and-last mile” travel). City of Ryde council, Macquarie University, and Transport for NSW examined PMD use within the road transport system. Stage 1 of the project examined PMD use within a controlled pedestrian environment on the Macquarie University campus. Three PMD categories were used: one-wheelers (an electric unicycle, the Solowheel); two-wheelers (an electric scooter, the Egret); and three-wheelers (the Qugo). The two-wheeled PMD was most effective in terms of flexibility. In contrast, the three-wheeled PMD was most effective in terms of speed. One-wheeled PMD riders were very satisfied with their device, especially at speed, but significant training and practice was required. Two-wheeled PMD riders had less difficulty navigating through pedestrian precincts and favoured the manoeuvrability of the device as the relative narrowness of the two-wheeled PMD made it easier to use on a diversity of path widths. The usability of all PMDs was compromised by the weight of the devices, difficulties in ascending steeper gradients, portability, and parking. This was a limited trial, with a small number of participants and within a unique environment. However, agreement has been reached for a Stage 2 extension into the Macquarie Park business precinct for further real-world trials within a fully functional road transport system.
Resumo:
Review conducted as part of a Queensland Department of Transport and Main Roads funded project ‘Roundabout design review’. The project examined: - Design guidelines - Factors that affect safety at roundabouts
Resumo:
The aim of this study is to examine the relationship of the Roman villa to its environment. The villa was an important feature of the countryside intended both for agricultural production and for leisure. Manuals of Roman agriculture give instructions on how to select a location for an estate. The ideal location was a moderate slope facing east or south in a healthy area and good neighborhood, near good water resources and fertile soils. A road or a navigable river or the sea was needed for transportation of produce. A market for selling the produce, a town or a village, should have been nearby. The research area is the surroundings of the city of Rome, a key area for the development of the villa. The materials used consist of archaeological settlement sites, literary and epigraphical evidence as well as environmental data. The sites include all settlement sites from the 7th century BC to 5th century AD to examine changes in the tradition of site selection. Geographical Information Systems were used to analyze the data. Six aspects of location were examined: geology, soils, water resources, terrain, visibility/viewability and relationship to roads and habitation centers. Geology was important for finding building materials and the large villas from the 2nd century BC onwards are close to sources of building stones. Fertile soils were sought even in the period of the densest settlement. The area is rich in water, both rainfall and groundwater, and finding a water supply was fairly easy. A certain kind of terrain was sought over very long periods: a small spur or ridge shoulder facing preferably south with an open area in front of the site. The most popular villa resorts are located on the slopes visible from almost the entire Roman region. A visible villa served the social and political aspirations of the owner, whereas being in the villa created a sense of privacy. The area has a very dense road network ensuring good connectivity from almost anywhere in the region. The best visibility/viewability, dense settlement and most burials by roads coincide, creating a good neighborhood. The locations featuring the most qualities cover nearly a quarter of the area and more than half of the settlement sites are located in them. The ideal location was based on centuries of practical experience and rationalized by the literary tradition.
Resumo:
- Objective We sought to assess the effect of long-term exposure to ambient air pollution on the prevalence of self-reported health outcomes in Australian women. - Design Cross-sectional study - Setting and participants The geocoded residential addresses of 26 991 women across 3 age cohorts in the Australian Longitudinal Study on Women's Health between 2006 and 2011 were linked to nitrogen dioxide (NO2) exposure estimates from a land-use regression model. Annual average NO2 concentrations and residential proximity to roads were used as proxies of exposure to ambient air pollution. - Outcome measures Self-reported disease presence for diabetes mellitus, heart disease, hypertension, stroke, asthma, chronic obstructive pulmonary disease and self-reported symptoms of allergies, breathing difficulties, chest pain and palpitations. - Methods Disease prevalence was modelled by population-averaged Poisson regression models estimated by generalised estimating equations. Associations between symptoms and ambient air pollution were modelled by multilevel mixed logistic regression. Spatial clustering was accounted for at the postcode level. - Results No associations were observed between any of the outcome and exposure variables considered at the 1% significance level after adjusting for known risk factors and confounders. - Conclusions Long-term exposure to ambient air pollution was not associated with self-reported disease prevalence in Australian women. The observed results may have been due to exposure and outcome misclassification, lack of power to detect weak associations or an actual absence of associations with self-reported outcomes at the relatively low annual average air pollution exposure levels across Australia.