951 resultados para q-Fourier Transform
Resumo:
Investigations of the vibrational spectra of cyclo(Gly-Gly), cyclo(L-Ala-L-Ala) and cyclo(t-Ala-Gly) are reported. Raman scattering and Fourier transform infrared (FTIR) spectra of solid-state and aqueous protonated samples, as well as their corresponding N-deuterated isotopomers, have been examined. In addition, density functional theory (DFT) (B3-LYP/cc-pVDZ) calculations of molecular structures and their associated vibrational modes were carried out. In each case, the calculated structures of lowest energy for the isolated gas-phase molecules have boat conformations. Assignments have been made for the observed Raman and FTIR vibrational bands of the cyclic di-amino acid peptides (CDAPs) examined. Raman polarization studies of aqueous phase samples are consistent with C-2 and C-1 symmetries for the six-membered rings of cyclo(L-Ala-L-Ala) and cydo(L-Ala-Gly), respectively. There is a good correlation between experimental and calculated vibrational bands for the three CDAPs. These data are in keeping with boat conformations for cydo(L-Ala-L-Ala) and cyclo(L-Ala-Gly) molecules, predicted by the ab initio calculations, in both the solid and aqueous solution states. However, Raman spectroscopic results might infer that cyclo(L-AlaGly) deviates only slightly from planarity in the solid state. The potential energy distributions of the amide I and II modes of a cis-peptide linkage are shown to be significantly different from those of the trans-peptides. For example, deuterium shifts have shown that the cis-amide I vibrations found in cyclo(Gly-Gly), cyclo(L-Ala-L-Ala), and cyclo(L-Ala-Gly) have larger N-H contributions compared to their trans-amide counterparts. Compared to trans-amide II vibrations, cis-amide II vibrations show a considerable decrease in N-H character.
Resumo:
Solid-state protonated and N,O-deuterated Fourier transform infrared (IR) and Raman scattering spectra together with the protonated and deuterated Raman spectra in aqueous solution of the cyclic di-amino acid peptide cyclo(L-Asp-L-Asp) are reported. Vibrational band assignments have been made on the basis of comparisons with previously cited literature values for diketopiperazine (DKP) derivatives and normal coordinate analyses for both the protonated and deuterated species based upon DFT calculations at the B3-LYP/cc-pVDZ level of the isolated molecule in the gas phase. The calculated minimum energy structure for cyclo(L-Asp-L-Asp), assuming C-2 symmetry, predicts a boat conformation for the DKP ring with both the two L-aspartyl side chains being folded slightly above the ring. The C=O stretching vibrations have been assigned for the side-chain carboxylic acid group (e.g. at 1693 and 1670 cm(-1) in the Raman spectrum) and the cis amide I bands (e.g. at 1660 cm(-1) in the Raman spectrum). The presence of two bands for the carboxylic acid C=O stretching modes in the solid-state Raman spectrum can be accounted for by factor group splitting of the two nonequivalent molecules in a crystallographic unit cell. The cis amide II band is observed at 1489 cm(-1) in the solid-state Raman spectrum, which is in agreement with results for cyclic di-amino acid peptide molecules examined previously in the solid state, where the DKP ring adopts a boat conformation. Additionally, it also appears that as the molecular mass of the substituent on the C-alpha atom is increased, the amide II band wavenumber decreases to below 1500 cm(-1); this may be a consequence of increased strain on the DKP ring. The cis amide II Raman band is characterized by its relatively small deuterium shift (29 cm(-1)), which indicates that this band has a smaller N-H bending contribution than the trans amide II vibrational band observed for linear peptides.
Resumo:
B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.
Resumo:
Many modern artists paint in oil or oil-modified alkyd paints over acrylic grounds. In some cases the oil based paints do not remain adhered to the ground. In a set of composite samples of oil or alkyd paints, over acrylic grounds, naturally aged for nine years, some of the samples delaminated. Samples were analyzed with X-ray fluorescence (XRF), inductively coupled plasma (ICP), Fourier transform infrared - attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), pyrolysis gas-chromatography mass-spectrometry (PY-GC/MS), laser desorption/ionization mass-spectrometry (LDI-MS), atomic force microscopy (AFM) and other methods, in order to find what the delaminating ones have in common. In addition, two examples of severely delaminating paintings were examined, to confirm the results from the laboratory-prepared samples. Results indicate the main cause of delamination is metal soaps in the oil paint and particularly zinc soaps. There is some evidence that metal soaps were more concentrated at the interface between the layers and this disrupted the adhesion. The ground is a minor consideration as well, rougher grounds providing better adhesion than smooth ones.
Resumo:
Developing appropriate treatments for easel paintings can be complex, as many works are composed of various materials that respond in different ways. When selecting a filling material for these artworks, several properties are investigated including: the need for the infill to react to environmental conditions in a similar manner as the original material; the need for the infill to have good handling properties, adhesion to the original support, and cohesion within the filling material; the ability for the infill to withstand the stress of the surrounding material and; be as flexible as the original material to not cause further damage. Also, changes in colour or mechanical properties should not occur as part of the ageing process. Studies are needed on acrylic-based materials used as infills in conservation treatments. This research examines some of the chemical, physical, and optical changes of eleven filling materials before and after ageing, with the aim to evaluate the overall appropriateness of these materials as infills for easel paintings. The materials examined were three rabbit skin glue (RSG) gessoes, and seven commercially prepared acrylic materials, all easily acquired in North America. Chemical analysis was carried out with Fourier transform infrared (FTIR) spectroscopy and X-ray fluorescence (XRF), pyrolysis gas chromatography-mass spectroscopy (Py-GC/MS), and differential scanning calorimetry (DSC). Overall the compositions of the various materials examined were found to be in agreement with the available literature and previous research. This study also examined characteristics of these materials not described in previous works and, additionally, presented the compositions and behaviour of several commonly used materials with little literature description. After application of an ageing regimen, most naturally aged and artificially aged samples displayed small changes in gloss, colour, thickness, and diffusive behaviour; however, to evaluate these materials fully mechanical testing and environmental studies should be carried out.
Resumo:
We analyse the intensity oscillations observed in the gradual phase of a white-light flare on the RS CV n binary II Peg. Fast Fourier Transform power spectra and Wavelet analysis reveal a period of 220 s. The reliability of the oscillation is tested using several criteria. Oscillating coronal loop models are used to derive physical parameters such as temperature, electron density and magnetic field strength associated with the coronal loop. The derived parameters are consistent with the near-simultaneous X-ray observations of the flare. There is no evidence for oscillations in the quiescent state of the binary.