955 resultados para protein chemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitope mimicry is the theory that an infectious agent such as a virus causes pathological effects via mimicry of host proteins and thus elicits a cross-reactive immune response to host tissues. Weise and Carnegie (1988) found a region of sequence similarity between the pol gene of the Maedi Visna virus (MVV), which induces demyelinating encephalitis in sheep, and myelin basic protein (MBP), which is known to induce experimental allergic encephalitis (EAE) in laboratory animals. In this study, cross-reactions between sera raised in sheep against synthetic peptides of MVV (TGKIPWILLPGR) and 21.5 kDa MBP (SGKVPWLKRPGR) were demonstrated using enzyme-linked immunosorbant assay (ELISA) and thin layer chromatography (TLC) immunoprobing. The antibody responses of MVV-infected sheep were investigated using ELISA against the peptides, and MBP protein, immunoprobing of the peptides on TPC plates and Western blotting against MBP. Slight significant reactions to the 21.5 kDa MBP peptide (P < 0.001) and to a lesser extent sheep MBP (P < 0.004) were detected in ELISA. The MBP peptide evoked stronger responses from more sera than the MVV peptide on immunoprobed TLC plates. On the Western blots, eight of the 23 sheep with Visna had serum reactivity to MBP. This slight reaction to MBP in MVV-infected sheep is of interest because of the immune responses to MBP evident in multiple sclerosis and EAE, but its relevance in Visna is limited since no correlation with disease severity was observed. The cell-mediated immune responses of MVV-infected sheep against similar peptides was assessed. The peptides did not stimulate proliferation of peripheral blood lymphocytes of MVV-infected sheep. Since the MVV peptide was not recognised by antibodies or T lymphocytes from MVV-infected and encephalic sheep, it was concluded that epitope mimicry of this 21.5 kDa MBP peptide by the similar MVV pol peptide was not contributing to the immunopathogenesis of Visna. The slight antibody response to MBP and the MBP peptide can be attributed to by-stander effects of the immunopathology of MVV-induced encephalitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactivity to a peptide from the HTLV-I polyprotein (FKLPGLNSR) and a similar sequence from myelin basic protein (MBP) (FKLGGRDSR) was examined in relation to the proposal that mimicry of MBP by HTLV-I could be involved in autoimmune responses in HTLV-I-associated myelopathy (HAM). It was found that rabbit antibodies raised against the HTLV-I peptide recognised both peptides, with a titre of 1/10240 to the HTLV-I peptide and 1/5220 to the MBP peptide. Human sera from HAM patients and a HTLV-I carrier without HAM showed slightly higher responses to the HTLV-I peptide compared to the responses from uninfected human sera. HAM patients had greater responses to the HTLV-I peptide than to the similar MBP peptide and an unrelated bovine MBP peptide. There was no recognition of the peptides by peripheral blood lymphocytes from HAM patients or a HTLV-I carrier without HAM. It was concluded that although cross-reactivity was demonstrated in rabbits and the HTLV-I peptide was recognised by sera from HAM patients, the epitope does not appear to evoke a mimicking response to the similar region in MBP. Hence it is not likely to be involved in the pathogenesis of HAM through molecular mimicry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid and catalyst-free cycloaddition system for visible-light-induced click chemistry is reported. A readily accessible photoreactive 2H-azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low-energy light sources thus enables efficient small-molecule synthesis with a diverse range of multiple-bond-containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron-deficient multiple-bond-containing materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism’s intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. Methods SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. Results The strain harboring the SNV with the most marked impact on proteolysis (cthtrAP370L) was detected to have a significant reduction in the production of infectious elementary bodies. Conclusions This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane proteins play important roles in many biochemical processes and are also attractive targets of drug discovery for various diseases. The elucidation of membrane protein types provides clues for understanding the structure and function of proteins. Recently we developed a novel system for predicting protein subnuclear localizations. In this paper, we propose a simplified version of our system for predicting membrane protein types directly from primary protein structures, which incorporates amino acid classifications and physicochemical properties into a general form of pseudo-amino acid composition. In this simplified system, we will design a two-stage multi-class support vector machine combined with a two-step optimal feature selection process, which proves very effective in our experiments. The performance of the present method is evaluated on two benchmark datasets consisting of five types of membrane proteins. The overall accuracies of prediction for five types are 93.25% and 96.61% via the jackknife test and independent dataset test, respectively. These results indicate that our method is effective and valuable for predicting membrane protein types. A web server for the proposed method is available at http://www.juemengt.com/jcc/memty_page.php

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-Hydroxyperoxyl radicals are formed during atmospheric oxidation of unsaturated volatile organic compounds such as isoprene. They are intermediates in the combustion of alcohols. In these environments the unimolecular isomerization and decomposition of β-hydroxyperoxyl radicals may be of importance, either through chemical or thermal activation. We have used ion-trap mass spectrometry to generate the distonic charge-tagged β-hydroxyalkyl radical anion, ˙CH2C(OH)(CH3)CH2C(O)O−, and investigated its subsequent reaction with O2 in the gas phase under conditions that are devoid of complicating radical–radical reactions. Quantum chemical calculations and master equation/RRKM theory modeling are used to rationalize the results and discern a reaction mechanism. Reaction is found to proceed via initial hydrogen abstraction from the γ-methylene group and from the β-hydroxyl group, with both reaction channels eventually forming isobaric product ions due to loss of either ˙OH + HCHO or ˙OH + CO2. Isotope labeling studies confirm that a 1,5-hydrogen shift from the β-hydroxyl functionality results in a hydroperoxyalkoxyl radical intermediate that can undergo further unimolecular dissociations. Furthermore, this study confirms that the facile decomposition of β-hydroxyperoxyl radicals can yield ˙OH in the gas phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric pressure gas plasma (AGP) generates reactive oxygen species (ROS) that induce apoptosis in cultured cancer cells. The majority of cancer cells develop a ROS-scavenging anti-oxidant system regulated by Nrf2, which confers resistance to ROS-mediated cancer cell death. Generation of ROS is involved in the AGP-induced cancer cell death of several colorectal cancer cells (Caco2, HCT116 and SW480) by activation of ASK1-mediated apoptosis signaling pathway without affecting control cells (human colonic sub-epithelial myofibroblasts; CO18, human fetal lung fibroblast; MRC5 and fetal human colon; FHC). However, the identity of an oxidase participating in AGP-induced cancer cell death is unknown. Here, we report that AGP up-regulates the expression of Nox2 (NADPH oxidase) to produce ROS. RNA interference designed to target Nox2 effectively inhibits the AGP-induced ROS production and cancer cell death. In some cases both colorectal cancer HT29 and control cells showed resistance to AGP treatment. Compared to AGP-sensitive Caco2 cells, HT29 cells show a higher basal level of the anti-oxidant system transcriptional regulator Nrf2 and its target protein sulfiredoxin (Srx) which are involved in cellular redox homeostasis. Silencing of both Nrf2 and Srx sensitized HT29 cells, leads to ROS overproduction and decreased cell viability. This indicates that in HT29 cells, Nrf2/Srx axis is a protective factor against AGP-induced oxidative stress. The inhibition of Nrf2/Srx signaling should be considered as a central target in drug-resistant colorectal cancer treatments.