983 resultados para polymeric composite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New low dimensional polymeric haloplumbate(II) complexes of the dication of (4,4'-bis(imidazolyl-ylmethyl)biphenyl) were synthesised and their crystal structures determined. Complex 1, [Pb4Br12(C40H40N8)], has cis-edge-shared, octahedral, lead bromide double chains. In compound 2 [Pb4Cl12(C40H40N8)]center dot H2O, the inorganic chains are corner-shared, square pyramidal chains of lead chloride. In both compounds the organic ammoniums form regular layers that alternate with the inorganic chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fullerene/ionic-liquid composite was explored. Transmission Electron Microscopy (TEM) study showed that in the composite, C-60 mainly exists as nano-clusters, Raman spectrum proved that the composite formed only by physical Mix of C-60 and 1-Butyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), the combination did not change the chemical naturation of C-60. The electrochemical properties of the composite modified electrode, including the electrode reaction control function and the interfacial potential effect were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically transparent, crack-free, mesoporous anatase TiO2 thin films were fabricated. The Ag/TiO2 composite films were prepared by incorporating Ag in the pores of TiO2 films with an impregnation method via photoreduction. The as-prepared composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectronic spectra (XPS) and N-2 adsorption. The release behavior of silver ions in the mesoporous composite film was also studied. Moreover, the antimicrobial behaviors of the mesoporous film were also investigated by confocal laser scanning microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nd2CexO3+2x (x = 2.25, 2.5, 2.75, 3.0) were synthesized by solid-state reaction, and their phase stabilities and thermophysical properties were investigated. The X-ray diffraction (XRD) results indicated that Nd2CexO3+2x with fluorite structure were stable after long-term annealing at 1673 K. They have higher thermal expansion coefficients (TECs) than yttria-stabilized zirconia (YSZ) which is the typical thermal barrier coating (TBC) material, especially the thermal expansion as a function of temperature is parallel to that of the nickel-based superalloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the fabrication of an efficient amperometric hydrogen peroxide sensor with favorable properties is presented. Prussian blue (PB) was catalytically synthesized by Pt nanoparticles (Pt-nano) from ferric ferricyanide aqueous solution to form PB@Pt-nano hybrid, and it was confirmed by transmission electron microscope (TEM) and optical spectra. The electrochemical behavior of PB@Pt-nano was highly improved through its integration with poly(diallyldimethylammonium chloride) modified carbon nanotubes (PCNTs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of red-light emitting electrophosphorescent polyfluorenes (PFs) with varying content of a quinoline-based iridium complex, (PPQ)(2)Ir(acac) (bis(2,4-diphenylquinolyl-N,C-2') iridium(acetylacetonate)), in the side chain are synthesized by Suzuki polycondensation. Because of the efficient Forster energy transfer from the PF main chain to (PPQ)(2)Ir(acac) and direct charge trapping on the complex, the electroluminescent emission from PF is nearly completely quenched, even though the amount of iridium complex I incorporated into the polymers is as low as 1 mol %. Based on a single-layer device configuration, a luminous efficiency of up to 5.0 cd A(-1) with a luminance of 2000 cd m(-2) and Commission Internationale de L'Eclairage coordinates of (0.63, 0.35) (x, y) is realized, which is far superior to that of previously reported red-light emitting PFs containing benzothiazole- and isoquinoline-based iridium complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) possessing a conjugated pyridinone ring was shown to be effective for dispersing multiwalled carbon nanotubes (MWCNTs) in DMSO. The dispersions in which the SPBIBI to MWCNTs mass ratio was 4:1 demonstrated the highest MWCNTs concentrations, i.e., 1.5-2.0 mg mL(-1), and were found to be stable for more than six months at room temperature. Through casting of these dispersions, MWCNTs/SPBIBI composite membranes were successfully fabricated on substrates as proton exchange membranes for fuel cell applications and showed no signs of macroscopic aggregation. The properties of composite membranes were investigated, and it was found that the homogeneous dispersion of the MWCNTs in the SPBIBI matrix altered the morphology structures of the composite membranes, which lead to the formation of more regular and smaller cluster-like ion domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most nanofiltration (NF) membranes are composite and have a polyamide thin film prepared by interfacial polymerization. Their performances mainly correlate the structure of the thin film and monomers used for its preparation. In this work, a novel thin-film composite (TFC) nanofiltration membrane was successfully prepared from 3,3',5,5'-biphenyl tetraacyl chloride (mm-BTEC) and piperazine (PIP) through interfacial polymerization. Attenuated reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS) were used to characterize the chemical composition of the membrane surface. The membrane performance was optimized by studying preparation parameters including monomer concentration, reaction time, and pH of aqueous phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes@SnO2-Au (MWCNTs@SnO2-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO2-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO2-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO2-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As inorganic proton conductors. phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and efficient method for patterning polymeric semiconductors for applications in the field of organic electronics is proposed. The entire polymer layer, except for the desired pattern, is selectively lifted off from a flat poly(dimethylsiloxane) (PDMS) stamp surface by an epoxy mold with a relief pattern. This is advantageous because the elastic deformation of the PDMS stamp around protrusions of a patterned stamp under pressure can assist the plastic deformation of a polymer film along the pattern edges, yielding large area and high quality patterns, and the PDMS surface has low surface energy, which allows the easy removal of the polymer film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)(3)(2+) immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene nanosheets, dispersed in Nafion (Nafion-G) solution, were used in combination with in situ plated bismuth film electrode for fabricating the enhanced electrochemical sensing platform to determine the lead (Pb2+) and cadmium (Cd2+) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the composite film modified glassy carbon electrode were investigated. It is found that the prepared Nafion-G composite film not only exhibited improved sensitivity for the metal ion detections, but also alleviated the interferences due to the synergistic effect of graphene nanosheets and Nafion. The linear calibration curves ranged from 0.5 mu g L-1 to 50 mu g L-1 for Pb2+ and 1.5 mu g L-1 to 30 mu g L-1 for Cd2+. respectively. The detection limits (S/N = 3) were estimated to be around 0.02 mu g L-1 for Pb2+ and Cd2+. The practical application of the proposed method was verified in the water sample determination.