962 resultados para polybrominated diphenyl ether
Resumo:
New comblike polymers(CP) have been synthesized by reacting monomethyl ether of polyethylene glycol(PEGME) with poly(methyl vinyl ether-alt-maleic anhydride)(MA) and endcapping the residual carboxylic acid with methanol. Butanone was selected as a solvent for the esterification reaction in order to obtain a completely soluble product. They were characterized by IR, C-13 NMR and elemental analysis.
Resumo:
A comb polymer(CP350) with oligo-oxyethlene side chains was prepared from methyl vinyl ether/maleic anhydride copolymer. Homogeneous amorphous polymer electrolyte were made from the comb polymer and LiCF3SO3 by solvent casting from acetone, and their conductivities were measured as a function of temperature and salt concentration. Maximum conductivity close I to 5.08 x 10(-5)S/cm was achieved at room temperature at [Li]/[EO] ratio of about 0.12.
Resumo:
Miscibility in blends of three styrene-butadiene-styrene and one styrene-isoprene-styrene triblock copolymers containing 28%, 30%, 48%, and 14% by weight of polystyrene, respectively, with poly(vinyl methyl ether) (PVME) were investigated by FTIR spectroscopy and differential scanning calorimetry (DSC). It was found from the optical clarity and the glass transition temperature behavior that the blends show miscibility for each kind of triblock copolymers below a certain concentration of PVME. The concentration range to show miscibility becomes wider as the polystyrene content and molecular weight of PS segment in the triblock copolymers increase. From the FTIR results, the relative peak intensity of the 1100 cm-1 region due to COCH3 band of PVME and peak position of 698 cm-1 region due to phenyl ring are sensitive to the miscibility of SBS(SIS)/PVME blends. The results show that the miscibility in SBS(SIS)/PVME blends is greatly affected by the composition of the copolymers and the polystyrene content in the triblock copolymers. Molecular weights of polystyrene segments have also affected the miscibility of the blends. (C) 1995 John Wiley & Sons, Inc.
Resumo:
A new non-cyclic ligand, tris(4-carboxy-3-oxabutyl) amine (H3L . HCl) and its lanthanum(III) complex have been prepared and their crystal structures determined. In the lanthanum(III) complex the metal ion is coordinated to one nitrogen atom, three ether o
Resumo:
The title complex was prepared by reacting Yb(NO3)3 (12-crown-4) with 1, 10-phenanthiroline (hereafter phen) in acetone. It crystallized in the triclinic space group P1BAR with a = 10.095(5), b = 17.415(4), c = 8.710(2) angstrom; alpha = 92.45(2), beta = 115.83(3), gamma = 74.08(3)degrees and D(c), = 1.85 g cm-3; Z = 2. The metal ion in this complex is nine-coordinated to three bidentate nitrate ions, two nitrogen atoms of a phen and a water molecule. The crown ligand is hydrogen bonded to the coordination water molecule. The symmetry change of the crown ether is also discussed.
Resumo:
The correlation between mechanical relaxation and ionic conductivity was investigated in a two-component epoxy network-LiClO4 electrolyte system. The network was composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG). The effects of salt concentration, molecular weight of PEG in DGEPEG and the proportion of DGEPEG (1000) in DGEPEG/TGEG ratio on the ionic conductivity and the mechanical relaxation of the system were studied. It was found that, among the three influential factors, the former reinforces the network chains, reduces the free volume fraction and thus increases the relaxation time of the segmental motion, which in turn lowers the ionic conductivity of the specimen. Conversely, the latter two increase the free volume and thus the chain flexibility, showing an opposite effect. From the iso-free-volume plot of the shift factor log at and reduced ionic conductivity, it is noted that the plot can be used to examine the temperature dependence of segmental mobility and seems to be useful to judge whether the incorporated salt has been dissociated completely. Besides, the ionic conductivity and relaxation time at constant reference temperature are linearly correlated with each other in all the three cases. This result gives an additional experimental confirmation of the coordinated motion model of the ionic hopping with the moving polymer chain segment, which is generally used to explain the ionic conduction in non-glassy amorphous polymer electrolytes.
Resumo:
Reaction of 1,3-cyclohexadiene(tricarbonyl)iron (1) with ortho-substituted aryllithium reagents ArLi (Ar=o-CH3C6H4, o-CH3OC6H4, o-CF3C6H4) in ether at low temperature, and subsequent alkylation of the acylmetalates formed with Et3OBF4 in aqueous solution at 0-degrees-C or in CH2Cl2 at -60-degrees-C gave the 1,3-cyclohexadiene(dicarbonyl)[ethoxy(aryl)carbene]iron complexes (eta4-C6H8)(CO)2FeC(OC2H5)Ar (3, Ar = o-CH3C6H4; 4, Ar = o-CH3OC6H4), and the isomerized product (eta3-C6H8)(CO)2FeC(OC2H5)C6H4CF3-o (5), respectively, among which the structure of 3 has been established by an X-ray diffraction study. Complex 3 is monoclinic, space group P2(1) with a = 8.118(4), b = 7.367(4), c = 14.002(6) angstrom, beta = 104.09(3)-degrees, V = 812.2(6) angstrom3, Z = 2, D(c) = 1.39 g cm-3, R = 0.056, and R(w) = 0.062 for 976 observed reflections. Complexes 3 and 5 were converted into the chelated allyliron phosphine adducts(eta3-C6H8)(CO)2(PR31)FeC(OC2H5)Ar (6, Ar = o-CH3C6H4, R1 = Ph; 7, Ar = o-CH3C6H4, R1 = OPh; 9, Ar = o-CF3C6H4, R1 = Ph), by reaction with phosphines in petroleum ether at low temperatures.
Resumo:
The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60-degrees-C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, B(ij), have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility.
Resumo:
The half-open vanadocene, V[2,4-(CH3)2C5H5](C5H5)CO, was obtained by the reaction of V[2,4-(CH3)2C5H5](C5H5)PMe3 with CO in petroleum ether at room temperature. Its crystal structure was determined by X-ray diffraction technique. The crystal was monoclinic with space group P2(1)/n, a = 16.614(3), b = 7.636(1), c = 19.128(6) angstrom, beta = 99.92(2)-degrees, V = 2390.5(9) angstrom3, and Z = 8. The final R value was 0.043. The V(1)-CPD(1) (half) (PD = 2,4-(CH3)2C5H5) bonds were shorter (0.038 angstrom) than the V(1)-CCP(1) (half) (CP = C5H5) bonds, averaging 2.224(4) versus 2.262(4) angstrom, respectively. 4V[2,4-(CH3)2C5H5](C5H5)CO has been characterized by IR and EPR methods.
Resumo:
This paper describes the mode I delamination behaviour of a unidirectional carbon-fibre/poly(phenylene ether ketone)(PEK-C) composite. Tests have been performed on double cantilever beam (DCB) specimens. Several data reduction schemes are used to obtain the critical strain energy release rate, G(IC), and the results are compared. It is shown that when using a DCB test to determine the fracture toughness, corrections must be employed. The experimental methods have been described for ascertaining the correction terms, and the results are consistent after modification. Some of the authors' results are different from those of other authors, particularly the negative correction term for crack length, the larger exponent (n > 3) in the relationship C = Ra(n), and decrements of flexural modulus with the crack growth when using the simple beam theory to predict the bending behaviour of DCB specimens. The possible reasons are discussed.
Resumo:
An epoxy network-LiClO4 electrolyte system was prepared from diglycidyl ether of polyethylene glycol and triglycidyl ether of glycerol, cured in the presence of LiClO4 only. Various techniques were used to characterize the chemical structure of the precursors and the correlation between the viscoelasticity and conductivity of the cured films was examined.
Resumo:
Bis(t-butylcyclopentadienyl)lanthanide chloride (Ln = Nd or Gd) reacts with one equivalent of methyllithium in ether/tetrahydrofuran to give the complex [(C5H4tBu)2LnCH3]2 (Ln = Nd or Gd). The structure of [(C5H4tBu)2NdCH3]2 has been determined by X-ray analysis. The crystals are monoclinic of space group Cm with a = 9.538(2), b = 23.298(4), c = 9.505(3) angstrom, beta = 119.53(2)-degrees, V = 1828.0(7) angstrom 3, D(calc.) = 1.458 g/cm3 and Z = 2 for the dimer. The two (C5H4tBu)2Nd units in the dimer are connected by asymmetrical methyl bridges with independent Nd-C bond lengths of 2.70(2) and 2.53(2) angstrom and Nd-C-Nd angles of 94.7(9) and 87.3(6)-degrees.
Resumo:
Thin films of PSt/PMAA and PEO-PSt-PEO block polymers were deposited on a polystyrene substrate by solution adsorption (with or without solvent treatment), and the film surfaces were characterized by means of XPS. Direct solvent - casting of PEO-PSt-PEO from benzene solutions resulted in PSt-rich surfaces, whereas PMAA richer surfaces were obtained for PSt/PMAA films cast from DMF solutions. Moreover, solvent treatment after casting had profound effect on the film surface composition. Treatment with water markedly increased the surface concentration of polar PEO segments. In the case of PSt-PMAA block polymers, the PSt content on the surface increased in the order of water < ethanol < cyclohexane < petroleum ether, the last-named giving films with almost pure PSt surface. It is well worth noticing that the bulk composition had little to do with the surface composition for both PSt/PMAA and PEO-PSt-PEO block polymers within the composition range investigated when subsequent solvent treatment was applied.
Resumo:
Poly(ethylene oxide) (PEO) was found to be miscible with uncured epoxy resin, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) in each blend. However, PEO with M(n) = 20 000 was judged to be immiscible with the highly amine-crosslinked epoxy resin (ER). The miscibility and morphology of the ER/PEO blends was remarkably affected by crosslinking. It was observed that phase separation in the ER/PEO blends occurred as the crosslinking progressed. This is considered to be due to the dramatic change in the chemical and physical nature of ER during the crosslinking.