970 resultados para platelet-derived growth factor
Resumo:
Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor beta (TGF beta)-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF beta inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf beta 1 nail murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF beta type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced gamma H2AX radiation-induced foci; and increased radiosensitivity compared with TGF beta competent cells. We determined that loss of TGF beta signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF beta restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf beta 1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF beta may be used to advantage in cancer therapy.
Resumo:
The Australian elapid snakes are amongst the most venomous snakes in the world, but much less is known about the overall venom composition in comparison to Asian and American snakes. We have used a combined approach of cDNA cloning and 2-DE with MS to identify nerve growth factor (NGF) in venoms of the Australian elapid snakes and demonstrate its neurite outgrowth activity While a single 730 nucleotide ORF, coding for a 243 amino acid precursor protein was detected in all snakes, use of 2-DE identified NGF proteins with considerable variation in molecular size within and between the different snakes. The variation in size can be explained at least in part by Winked glycosylation. it is possible that these modifications alter the stability, is necessary to activity and other characteristics of the snake NGFs. Further characterisation delineate the function of the individual NGF isoforms.
Resumo:
Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis, Vegfb(-/-) mice are healthy and fertile. Despite appearing overtly normal, Vegfb(-/-) hearts are reduced in size and display vascular dysfunction after coronary occlusion and impaired recovery from experimentally induced myocardial ischemia. These findings reveal a role for VEGF-B in the development or function of coronary vasculature and suggest potential clinical use in therapeutic angiogenesis. The full text of this article is available at http://www.circresaha.org.
Resumo:
Fibroblast growth factor-2 (FGF-2) is mitogenic for the human breast cancer cell line MCF-7; here we investigate some of the signaling pathways subserving this activity. FGF-2 stimulation of MCF-7 cells resulted in a global increase of intracellular tyrosine phosphorylation of proteins, particularly FGF receptor substrate-2, the protooncogene product Src and the mitogen-activated protein kinase (MAP kinase) cascade, A major increase in the tyrosine phosphorylation of a 30-kDa protein species was also found. This protein was identified as cyclin D2 by mass spectrometry after trypsin digestion. Immunoprecipitation of cyclin D2 and immunoblotting with anti-phosphotyrosine antibodies confirmed that the tyrosine phosphorylation of cyclin D2 was indeed induced by FGF-2 stimulation. In addition, pharmacological inhibition of Src (with herbimycin A and PP2), and of the MAP kinase cascade (with PD98059), confirmed that Src activity is required for the FGF-2-induced phosphorylation of cyclin D2 whereas MAP kinase activity is not, Thus, tyrosine phosphorylation of cyclin D2 may be a hey regulatory target for FGF-2 signaling. (C) 2000 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Zinc neurotoxicity is promoted by nerve growth factor but is prevented by leukaemia inhibitor factor
Resumo:
The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.