970 resultados para plankton
Resumo:
The crescent shaped Mascarene Plateau (southwestern Indian Ocean), some 2200 km in length, forms a partial barrier to the (predominantly westward) flow of the South Equatorial Current. Shallow areas of the Mascarene Plateau effectively form a large shelf sea without an associated coastline. Zooplankton sampling transects were made across the plateau and also the basin to the west, to investigate the role the partial interruption of flow has on zooplankton biomass and community structure over the region. Biomass data from Optical Plankton Counter (OPC) analysis, and variability in community structure from taxonomic analysis, appear to indicate that the obstruction by the plateau causes upwelling, nutrient enrichment and enhanced chlorophyll and secondary production levels downstream. The Mascarene Basin is clearly distinguishable from the ridge itself, and from the waters to the south and north, both in terms of size-distributed zooplankton biomass and community structure. Satellite remote sensing data, particularly remotely-sensed ocean colour imagery and the sea surface height anomaly (SSHA), indicate support for this hypothesis. A correlation was found between OPC biovolume and SSHA and sea surface temperature (SST), which may indicate the physical processes driving mesozooplankton variability in this area. Biomass values away from the influence of the ridge averaged 24 mg m-3, but downstream if the ridge biomass averaged 263 mg m-3. Copepods comprised 60% of the mean total organisms. Calanoid copepods varied considerably between regions, being lowest away from the influence of the plateau, where higher numbers of the cyclopoid copepods Oithona spp., Corycaeus spp. and Oncaea spp., and the harpacticoid Microsetella spp. were found.
Resumo:
The diel vertical migration (DVM) of the whole plankton community was investigated in the central and coastal Irish Sea. Generally, more than 60% of the plankton did not perform significant DVM. A correlation analysis of the weighted mean depths of different organisms and their potential predators suggested relationships between two groups, Oithona spp., copepod nauplii and fish larvae, and between Pseudocalanus elongatus, Calanus spp. and chaetognaths. The organisms showing significant DVM were chaetognaths (Sagitta spp.), Calanus spp. and P. elongatus. Calanus spp. showed clear ontogenic variations in DVM, and along with P. elongatus demonstrated great flexibility both in the amplitude and direction of migration. P. elongatus did not migrate in the coastal area and Calanus spp. showed a clear reverse migration. The direction of migration appeared to be related to the vertical position of the chaetognaths in the water column during the day.
Resumo:
Long-term regional changes in phytoplankton biomass in the Northeast Atlantic and North Sea are investigated using data from the Continuous Plankton Recorder survey. During the last decade there have been large changes in the long-term variation in phytoplankton biomass in the Northeast Atlantic and North Sea. Most regions, particularly in the North Sea, have shown a considerable increase in phytoplankton biomass while the opposite pattern was seen in the northern oceanic region of the Northeast Atlantic. These different spatial responses show similar patterns of change to the decadal variability in sea surface temperature influenced by the North Atlantic Oscillation index. Two rare oceanographic events and their relationship to the interannual changes in phytoplankton biomass are discussed. The results highlight the importance of maintaining long-term biological monitoring programmes to assess the biological responses to slow oceanic/atmospheric processes and to rare or episodic physical events.
Resumo:
Long-term changes in the plankton of the North Sea are investigated using data from the continuous plankton recorder (CPR) survey. During the last 4 decades, there appears to have been 2 large anomalous periods within the plankton data set, one that occurred in the late 1970s and the other in the late 1980s. These anomalous periods seem to be largely synchronous with unusual ocean climate conditions that have occurred episodically over a timescale of decades. The unusual ocean climate conditions prevailing at these 2 time periods appear to contain important hydrographical elements that involve oceanic incursions into the North Sea. This paper, using data from the CPR survey and providing evidence from other studies, focuses on the relationship between the long-term changes in the biology of the North Sea and these 2 exceptional hydro-climatic events. Here, we suggest that while atmospheric variability and associated changes in regional temperatures have a dominant effect on the marine environment, oceanic influences on the ecology of a semi-closed environment such as the North Sea may have been underestimated in the past.
Resumo:
Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
Resumo:
The Continuous Plankton Recorder (CPR) survey has been used to characterize phytoplankton and zooplankton space-time dynamics in the North Sea since 1931 and in the North Atlantic since 1939. Phytoplankton biomass is assessed from these samples by visual assessment of the green color of the silk mesh, the Phytoplankton Color Index (PCI), and the total count of diatoms and dinoflagellates. Species with a frequency of occurrence greater than 1% in the samples are used as indicator species of the community. We investigated (1) long-term fluctuations of phytoplankton biomass, total diatoms, and total dinoflagellates; (2) geographical variation of patterns; (3) the relationship between phytoplankton and climate forcing in the North Atlantic CPR samples; (4) the relative contribution of diatoms and dinoflagellates to the PCI; and (5) the fluctuations of the dominant species over the period of survey to provide more information on the processes linking climate to changes in the phytoplankton community. As a result of the differences in microscopic analysis methods prior to 1958, our analyses were conducted for the period ranging from 1958 to 2002. The North Atlantic was divided into six regions identified through bathymetric criteria and separated along a North-South axis. Based on 12 monthly time series, we demonstrate increasing trends in PCI and total dinoflagellates and a decrease in total diatoms.
Resumo:
The performance of four common estimators of diversity are investigated using calanoid copepod data from the Continuous Plankton Recorder (CPR) survey. The region of the North Atlantic and the North Sea was divided into squares of 400 nautical miles for each 2-month period. For each 144 possible cases, Pielou's pooled quadrat method was performed with the aims of determining asymptotic diversity and investigating the CPR sample-size dependence of diversity estimators. It is shown that the performance of diversity indices may greatly vary in space and time (at a seasonal scale). This dependence is more pronounced in higher diverse environments and when the sample size is small. Despite results showing that all estimators underestimate the `actual' diversity, comparison of sites remained reliable from a few pooled CPR samples. Using more than one CPR sample, the Gini coefficient appears to be a better diversity estimator than any other indices and spatial or temporal comparisons are highly satisfactory. In situations where comparative studies are needed but only one CPR sample is available, taxonomic richness was the preferred method of estimating diversity. Recommendations are proposed to maximise the efficiency of diversity estimations with the CPR data.
Resumo:
We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades, some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations such as the NAO.
Resumo:
Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of ‘model’ sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.
Resumo:
Long-term research in the western English Channel, undertaken by the marine laboratories in Plymouth, is described and details of survey methods, sites, and time series given in this chapter. Major findings are summarized and their limitations outlined. Current research, with recent reestablishment and expansion of many sampling programmes, is presented, and possible future approaches are indicated. These unique long-term data sets provide an environmental baseline for predicting complex ecological responses to local, regional, and global environmental change. Between 1888 and the present, investigations have been carried out into the physical, chemical, and biological components (ranging from plankton and fish to benthic and intertidal assemblages) of the western English Channel ecosystem. The Marine Biological Association of the United Kingdom has performed the main body of these observations. More recent contributions come from the Continuous Plankton Recorder Survey, now the Sir Alister Hardy Foundation for Ocean Science, dating from 1957; the Institute for Marine Environmental Research, from 1974 to 1987; and the Plymouth Marine Laboratory, which was formed by amalgamation of the Institute for Marine Environmental Research and part of the Marine Biological Association, from 1988. Together, these contributions constitute a unique data series; one of the longest and most comprehensive samplings of environmental and marine biological variables in the world. Since the termination of many of these time series in 1987-1988 during a reorganisation of UK marine research, there has been a resurgence of interest in long-term environmental change. Many programmes have been restarted and expanded with support from several agencies. The observations span significant periods of warming (1921-1961; 1985-present) and cooling (1962-1980). During these periods of change, the abundance of key species underwent dramatic shifts. The first period of warming saw changes in zooplankton, pelagic fish, and larval fish, including the collapse of an important herring fishery. During later periods of change, shifts in species abundances have been reflected in other assemblages, such as the intertidal zone and the benthic fauna. Many of these changes appear to be related to climate, manifested as temperature changes, acting directly or indirectly. The hypothesis that climate is a forcing factor is widely supported today and has been reinforced by recent studies that show responses of marine organisms to climatic attributes such as the strength of the North Atlantic Oscillation. The long-term data also yield important insights into the effects of anthropogenic disturbances such as fisheries exploitation and pollution. Comparison of demersal fish hauls over time highlights fisheries effects not only on commercially important species but also on the entire demersal community. The effects of acute ("Torrey Canyon" oil spill) and chronic (tributyltin [TBT] antifoulants) pollution are clearly seen in the intertidal records. Significant advances in diverse scientific disciplines have been generated from research undertaken alongside the long-term data series.
Resumo:
Sampling by the Continuous Plankton Recorder (CPR) over the NW Atlantic from 1960 to 2000 has enabled long-term studies of the larger components of the phytoplankton community, highlighting various changes, particularly during the 1990s. Analysis of an index of phytoplankton biomass, the Phytoplankton Colour Index (PCI) has revealed an increase over the past decade, most marked during the winter (December to February) months. Examination of the structure of the community using multiple linear-regression models indicates that the winter phytoplankton community composition has changed markedly in the 1990s compared to the 1960s. One phytoplankter, the dinoflagellate Ceratium arcticum (Cleve), has undergone dramatic changes in abundance during this period, with pronounced large winter blooms and decreased autumnal levels, and its contribution to the Phytoplankton Colour index values has increased significantly. Other dominant species in the phytoplankton community, both diatoms and dinoflagellates, did not show the same variations over the examined time period. It is suggested that the response of C. arcticum is probably a result of previously reported changes in stratification in the NW Atlantic, due to dynamic hydro-climatic (freshening and cooling) events.
Resumo:
Habitat selection processes in highly migratory animals such as sharks and whales are important to understand because they influence patterns of distribution, availability and therefore catch rates. However, spatial strategies remain poorly understood over seasonal scales in most species, including, most notably, the plankton-feeding basking shark Cetorhinus maximus. It was proposed nearly 50 yr ago that this globally distributed species migrates from coastal summer-feeding areas of the northeast Atlantic to hibernate during winter in deep water on the bottom of continental-shelf slopes. This view has perpetuated in the literature even though the 'hibernation theory' has not been tested directly. We have now tracked basking sharks for the first time over seasonal scales (1.7 to 6.5 mo) using 'pop-up' satellite archival transmitters. We show that they do not hibernate during winter but instead undertake extensive horizontal (up to 3400 km) and vertical (> 750 m depth) movements to utilise productive continental-shelf and shelf-edge habitats during summer, autumn and winter. They travel long distances (390 to 460 km) to locate temporally discrete productivity 'hotspots' at shelf-break fronts, but at no time were prolonged movements into open-ocean regions away from shelf waters observed. Basking sharks have a very broad vertical diving range and can dive beyond the known range of planktivorous whales. Our study suggests this species can exploit shelf and slope-associated zooplankton communities in mesopelagic (200 to 1000 m) as well as epipelagic habitat (0 to 200 m).
Resumo:
Sampling by the continuous plankton recorder (CPR) survey over the North Atlantic Ocean and the North Sea has enabled long-term studies of phytoplankton biomass. Analysis of an index of phytoplankton biomass, the phytoplankton colour index (PCI), has previously shown an increase in phytoplankton biomass in the NE Atlantic. In the current study, further investigations were conducted to determine the contribution of diatom and dinoflagellate cell counts to the PCI, their fluctuations over the last 45 yr and their geographical variations in the eastern North Atlantic and the North Sea. An increased contribution of dinoflagellates to the PCI was revealed over the south NE Atlantic and the northern North Sea. In contrast, the contribution of diatoms decreased in the north NE Atlantic and the northern North Sea. No discernible trends were found in the other regions of the North Sea. The relative contributions of diatoms and dinoflagellates to the PCI led to the identification of 3 geographically distinct dynamic regimes in the diatom/dinoflagellate dynamics in the NE Atlantic and the North Sea. Finally, it is stressed that the discrepancy observed in the patterns of PCI and diatom and dinoflagellate cell counts suggests that changes in PCI do not reflect changes in the community structure and that the exclusive use of PCI is not adequate to investigate the long-term trends in the trophic link between phytoplankton and herbivorous zooplankton.
Resumo:
A modelling scheme is described which uses satellite retrieved sea-surface temperature and chlorophyll-a to derive monthly zooplankton biomass estimates in the eastern North Atlantic; this forms part of a bio-physical model of inter-annual variations in the growth and survival of larvae and post-larvae of mackerel (Scomber scombrus). The temperature and chlorophyll data are incorporated first to model copepod (Calanus) egg production rates. Egg production is then converted to available food using distribution data from the Continuous Plankton Recorder (CPR) Survey, observed population biomass per unit daily egg production and the proportion of the larval mackerel diet comprising Calanus. Results are validated in comparison with field observations of zooplankton biomass. The principal benefit of the modelling scheme is the ability to use the combination of broad scale coverage and fine scale temporal and spatial variability of satellite data as driving forces in the model; weaknesses are the simplicity of the egg production model and the broad-scale generalizations assumed in the raising factors to convert egg production to biomass.
Resumo:
Measurements were made of the density and settling velocity of eggs of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus), using a density-gradient column. These results were related to observed vertical distributions of eggs obtained from stratified vertical distribution sampling in the Bay of Biscay. Eggs of both species had slightly positive buoyancy in local seawater throughout most of their development until near hatching, when there was a marked increase in density and they became negatively buoyant. The settling velocity of anchovy eggs, which are shaped as prolate ellipsoids, was close to predictions for spherical particles of equivalent volume. An improved model was developed for prediction of the settling velocity of sardine eggs, which are spherical with a relatively large perivitelline volume; this incorporated permeability of the chorion and adjustment of the density of the perivitelline fluid to ambient seawater. Eggs of both species were located mostly in the top 20 m of the water column, in increasing abundance towards the surface. A sub-surface peak of egg abundance was sometimes observed at the pycnocline, particularly where this was pronounced and associated with a low-salinity surface layer. There was a progressive deepening of the depth distributions for successive stages of egg development. Results from this study can be applied for improved plankton sampling of sardine and anchovy eggs and in modelling studies of their vertical distribution.