982 resultados para planar stack
Resumo:
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In 4, we describe an IDL-based 'AXCESS' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Resumo:
We have investigated the effect of sample hydration on the wide-angle X-ray scattering patterns of amyloid fibrils from two different sources, hen egg white lysozyme (HEWL) and an 11-residue peptide taken from the sequence of transthyretin (TTR105-115). Both samples show an inter-strand reflection at 4.7 Å and an inter-sheet reflection which occurs at 8.8 and 10 Å for TTR105-115 and HEWL fibrils, respectively. The positions, widths, and relative intensities of these reflections are conserved in patterns obtained from dried stalks and hydrated samples over a range of fibril concentrations. In 2D scattering patterns obtained from flow-aligned hydrated samples, the inter-strand and inter-sheet reflections showed, respectively, axial and equatorial alignment relative to the fibril axis, characteristic of the cross-β structure. Our results show that the cross-β structure of the fibrils is not a product of the dehydrating conditions typically employed to produce aligned samples, but is conserved in individual fibrils in hydrated samples under dilute conditions comparable to those associated with other biophysical and spectroscopic techniques. This suggests a structure consisting of a stack of two or more sheets whose interfaces are inaccessible to bulk water.
Resumo:
The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na+ and Ca2+, and separately with Sr2+ to resolutions of 1.85 Angstrom and 1.65 Angstrom, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na+ sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca2+ sites in the same structure are at the CG/CG steps in the minor groove. The Sr2+ ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr2+ derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4degrees in the Ca2+ and Na+ containing structure, and 13.4degrees in the Sr2+ containing structure. The crossover angles at the junction are 39.3degrees and 43.3degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3 Angstrom is observed for the Sr2+ containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The 3D reconstruction of a Golgi-stained dendritic tree from a serial stack of images captured with a transmitted light bright-field microscope is investigated. Modifications to the bootstrap filter are discussed such that the tree structure may be estimated recursively as a series of connected segments. The tracking performance of the bootstrap particle filter is compared against Differential Evolution, an evolutionary global optimisation method, both in terms of robustness and accuracy. It is found that the particle filtering approach is significantly more robust and accurate for the data considered.
Resumo:
The General Packet Radio Service (GPRS) has been developed for the mobile radio environment to allow the migration from the traditional circuit switched connection to a more efficient packet based communication link particularly for data transfer. GPRS requires the addition of not only the GPRS software protocol stack, but also more baseband functionality for the mobile as new coding schemes have be en defined, uplink status flag detection, multislot operation and dynamic coding scheme detect. This paper concentrates on evaluating the performance of the GPRS coding scheme detection methods in the presence of a multipath fading channel with a single co-channel interferer as a function of various soft-bit data widths. It has been found that compressing the soft-bit data widths from the output of the equalizer to save memory can influence the likelihood decision of the coding scheme detect function and hence contribute to the overall performance loss of the system. Coding scheme detection errors can therefore force the channel decoder to either select the incorrect decoding scheme or have no clear decision which coding scheme to use resulting in the decoded radio block failing the block check sequence and contribute to the block error rate. For correct performance simulation, the performance of the full coding scheme detection must be taken into account.
Resumo:
We study the equilibrium morphology of droplets of symmetric AB diblock copolymer on a flat substrate. Using self-consistent field theory (SCFT), we provide the first predictions for the equilibrium droplet shape and its internal structure. When the sustrate affinity for the A component, $\eta_A$, is small, the droplet adopts a nearly spherical shape much like that of simple fluids. Inside the spherical droplet, however, concentric circular lamellar layers stack on top of each other; hence the thickness of the droplet is effectively quantized by a half-integer or integer number of layers. At larger $\eta_A$ and smaller contact angle, the area of the upper-most layer becomes relatively large, resulting in a nearly flat, faceted top surface, followed by a semi-spherical slope. This geometry is remarkably reminiscent of the droplet shapes observed with smetic liquid crystals.
Resumo:
Background and purpose: Molecular mechanisms underlying the links between dietary intake of flavonoids and reduced cardiovascular disease risk are only partially understood. Key events in the pathogenesis of cardiovascular disease, particularly thrombosis, are inhibited by these polyphenolic compounds via mechanisms such as inhibition of platelet activation and associated signal transduction, attenuation of generation of reactive oxygen species, enhancement of nitric oxide production and binding to thromboxane A2 receptors. In vivo, effects of flavonoids are mediated by their metabolites, but the effects and modes of action of these compounds are not well-characterized. A good understanding of flavonoid structure–activity relationships with regard to platelet function is also lacking. Experimental approach: Inhibitory potencies of structurally distinct flavonoids (quercetin, apigenin and catechin) and plasma metabolites (tamarixetin, quercetin-3′-sulphate and quercetin-3-glucuronide) for collagen-stimulated platelet aggregation and 5-hydroxytryptamine secretion were measured in human platelets. Tyrosine phosphorylation of total protein, Syk and PLCγ2 (immunoprecipitation and Western blot analyses), and Fyn kinase activity were also measured in platelets. Internalization of flavonoids and metabolites in a megakaryocytic cell line (MEG-01 cells) was studied by fluorescence confocal microscopy. Key results: The inhibitory mechanisms of these compounds included blocking Fyn kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 following internalization. Principal functional groups attributed to potent inhibition were a planar, C-4 carbonyl substituted and C-3 hydroxylated C ring in addition to a B ring catechol moiety. Conclusions and implications: The structure–activity relationship for flavonoids on platelet function presented here may be exploited to design selective inhibitors of cell signalling.
Resumo:
Reaction of the dinuclear complex [{Rh(CO)(2)}(2) (mu-Cl)(2)]with an alpha-diimine ligand, 1,2- bis[(2,6-diisopropylphenyl) imino] acenaphthene (iPr(2)Ph-bian), produces square-planar [RhCl(CO)(iPr(2)Ph-bian)]. For the first time, 2: 1 and 1: 1 alpha-diimine/dimer reactions yielded the same product. The rigidity of iPr(2)Ph-bian together with its flexible electronic properties and steric requirements of the 2,6-diisopropyl substituents on the benzene rings allow rapid closure of a chelate bond and replacement of a CO ligand instead of chloride. A resonance Raman study of [RhCl(CO)(iPr(2)Ph-bian)] has revealed a predominant Rh-to-bian charge transfer (MLCT) character of electronic transitions in the visible spectral region. The stabilisation of [RhCl(CO)(iPr(2)Ph-bian)] in lower oxidation states by the pi-acceptor iPr(2)Ph-bian ligand was investigated in situ by UV-VIS, IR and EPR spectroelectrochemistry at variable temperatures. The construction of the novel UV-VIS-NIR-IR low-temperature OTTLE cell used in these studies is described in the last part of the paper.
Resumo:
Analysis and modeling of X-ray and neutron Bragg and total diffraction data show that the compounds referred to in the literature as “Pd(CN)2”and“Pt(CN)2” are nanocrystalline materials containing of small sheets of vertex-sharing square-planar M(CN)4 units, layered in a disordered manner with an intersheet separation of 3.44 A at 300 K. The small size of the crystallites means that the sheets’ edges form a significant fraction of each material. The Pd(CN)2 nanocrystallites studied using total neutron diffraction are terminated by water and the Pt(CN)2 nanocrystallites by ammonia, in place of half of the terminal cyanide groups, thus maintaining charge neutrality. The neutron samples contain sheets of approximate dimensions 30 A x 30 A. For sheets of the size we describe, our structural models predict compositions of Pd(CN)2-xH2O and Pt(CN)2-yNH3 (x = y = 0.29). These values are in good agreement with those obtained from total neutron diffraction and thermal analysis, and are also supported by infrared and Raman spectroscopy measurements. It is also possible to prepare related compounds Pd(CN)2-pNH3 and Pt(CN)2-qH2O, in which the terminating groups are exchanged. Additional samples showing sheet sizes in the range 10 A x 10 A (y = 0.67) to 80 A x 80 A (p = q = 0.12), as determined by X-ray diffraction, have been prepared. The related mixed-metal phase, Pd1/2Pt1/2(CN)2-qH2O(q = 0.50), is also nanocrystalline (sheet size 15 A x 15 A). In all cases, the interiors of the sheets are isostructural with those found in Ni(CN)2. Removal of the final traces of water or ammonia by heating results in decomposition of the compounds to Pd and Pt metal, or in the case of the mixed-metal cyanide, the alloy, Pd1/2Pt1/2, making it impossible to prepare the simple cyanides, Pd(CN)2, Pt(CN)2 or Pd1/2Pt1/2(CN)2, by this method.
Resumo:
Two new complex salts of the form (Bu4N)(2)[Ni(L)(2)] (1) and (Ph4P)(2)[Ni(L)(2)] (2) and four heteroleptic complexes cis-M(PPh3)(2)(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2N=CS2] and cis-M(PPh3)(2)(L') [M = Pd(II) (5), Pt(II) (6), L' = C6H5SO2N=CS2] were prepared and characterized by elemental analyses, IR, H-1, C-13 and P-31 NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)(2)(SH)(2), 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H center dot center dot center dot Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with sigma(rt) values similar to 10 (5) S cm (1) show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.
Resumo:
A new tri-functional ligand iBu2NCOCH2SOCH2CONiBu2 was prepared and characterized. The coordination chemistry of this ligand with uranyl nitrate was studied with IR, 1H NMR, electrospray mass-spectrometry, thermogravimetry, and elemental analysis. The structure of [UO2(NO3)2(iBu2NCOCH2SOCH2CONiBu2)] was determined by single-crystal X-ray diffraction. The uranium(VI) ion is surrounded by eight oxygens in a hexagonal bipyramidal geometry. Four oxygens from two nitrates and two oxygens from the ligand form a planar hexagon. The ligand is a bidentate chelate, bonding through sulfoxo and one of the carbamoyl groups to uranyl nitrate.
Resumo:
Two mixed bridged one-dimensional (1D) polynuclear complexes, [Cu3L2(mu(1,1)-N-3)(2)(mu-Cl)Cl](n) (1) and {[Cu3L2(mu-Cl)(3)Cl]center dot 0.46CH(3)OH}(n), (2), have been synthesized using the tridentate reduced Schiff-base ligand HL (2-[(2-dimethylamino-ethylamino)-methyl]-phenol). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. In both complexes the basic trinuclear angular units are joined together by weak chloro bridges to form a 1D chain. The trinuclear structure of 1 is composed of two terminal square planar [Cu(L)(mu(1,1)-N-3)] units connected by a central Cu(II) atom through bridging nitrogen atoms of end-on azido ligands and the phenoxo oxygen atom of the tridentate ligand. These four coordinating atoms along with a chloride ion form a distorted trigonal bipyramidal geometry around the central Cu(II). The structure of 2 is similar; the only difference being a Cl bridge replacing the mu(1,1)-N-3 bridge in the trinuclear unit. The magnetic properties of both trinuclear complexes can be very well reproduced with a simple linear symmetrical trimer model (H = JS(i)S(i+1)) with only one intracluster exchange coupling (J) including a weak intertrimer interaction (.j) reproduced with the molecular field approximation. This model provides very satisfactory fits for both complexes in the whole temperature range with the following parameters: g = 2.136(3), J = 93.9(3) cm(-1) and zj= -0.90(3) cm(-1) (z = 2) for 1 and g = 2.073(7), J = -44.9(4) cm(-1) and zJ = -1.26(6) cm(-1) (z = 2) for 2.
Resumo:
In this paper we report the degree of reliability of image sequences taken by off-the-shelf TV cameras for modeling camera rotation and reconstructing 3D structure using computer vision techniques. This is done in spite of the fact that computer vision systems usually use imaging devices that are specifically designed for the human vision. Our scenario consists of a static scene and a mobile camera moving through the scene. The scene is any long axial building dominated by features along the three principal orientations and with at least one wall containing prominent repetitive planar features such as doors, windows bricks etc. The camera is an ordinary commercial camcorder moving along the axial axis of the scene and is allowed to rotate freely within the range +/- 10 degrees in all directions. This makes it possible that the camera be held by a walking unprofessional cameraman with normal gait, or to be mounted on a mobile robot. The system has been tested successfully on sequence of images of a variety of structured, but fairly cluttered scenes taken by different walking cameramen. The potential application areas of the system include medicine, robotics and photogrammetry.
Resumo:
The main objective is to develop methods that automatically generate kinematic models for the movements of biological and robotic systems. Two methods for the identification of the kinematics are presented. The first method requires the elimination of the displacement variables that cannot be measured while the second method attempts to estimate the changes in these variables. The methods were tested using a planar two-revolute-joint linkage. Results show that the model parameters obtained agree with the actual parameters to within 5%. Moreover, the methods were applied to model head and neck movements in the sagittal plane. The results indicate that these movements are well modeled by a two-revolute-joint system. A spatial three-revolute-joint model was also discussed and tested.
Resumo:
The main objective is to generate kinematic models for the head and neck movements. The motivation comes from our study of individuals with quadriplegia and the need to design rehabilitation aiding devices such as robots and teletheses that can be controlled by head-neck movements. It is then necessary to develop mathematical models for the head and neck movements. Two identification methods have been applied to study the kinematics of head-neck movements of able-body as well as neck-injured subjects. In particular, sagittal plane movements are well modeled by a planar two-revolute-joint linkage. In fact, the motion in joint space seems to indicate that sagittal plane movements may be classified as a single DOF motion. Finally, a spatial three-revolute-joint system has been employed to model 3D head-neck movements.