975 resultados para parametric duration models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the significant impact the use of glucocorticoids can have on fracture risk independent of bone density, their use has been incorporated as one of the clinical risk factors for calculating the 10-year fracture risk in the World Health Organization's Fracture Risk Assessment Tool (FRAX(®)). Like the other clinical risk factors, the use of glucocorticoids is included as a dichotomous variable with use of steroids defined as past or present exposure of 3 months or more of use of a daily dose of 5 mg or more of prednisolone or equivalent. The purpose of this report is to give clinicians guidance on adjustments which should be made to the 10-year risk based on the dose, duration of use and mode of delivery of glucocorticoids preparations. A subcommittee of the International Society for Clinical Densitometry and International Osteoporosis Foundation joint Position Development Conference presented its findings to an expert panel and the following recommendations were selected. 1) There is a dose relationship between glucocorticoid use of greater than 3 months and fracture risk. The average dose exposure captured within FRAX(®) is likely to be a prednisone dose of 2.5-7.5 mg/day or its equivalent. Fracture probability is under-estimated when prednisone dose is greater than 7.5 mg/day and is over-estimated when the prednisone dose is less than 2.5 mg/day. 2) Frequent intermittent use of higher doses of glucocorticoids increases fracture risk. Because of the variability in dose and dosing schedule, quantification of this risk is not possible. 3) High dose inhaled glucocorticoids may be a risk factor for fracture. FRAX(®) may underestimate fracture probability in users of high dose inhaled glucocorticoids. 4) Appropriate glucocorticoid replacement in individuals with adrenal insufficiency has not been found to increase fracture risk. In such patients, use of glucocorticoids should not be included in FRAX(®) calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To assess the extent to which stage at diagnosis and adherence to treatment guidelines may explain the persistent differences in colorectal cancer survival between the USA and Europe. DESIGN: A high-resolution study using detailed clinical data on Dukes' stage, diagnostic procedures, treatment and follow-up, collected directly from medical records by trained abstractors under a single protocol, with standardised quality control and central statistical analysis. SETTING AND PARTICIPANTS: 21 population-based registries in seven US states and nine European countries provided data for random samples comprising 12 523 adults (15-99 years) diagnosed with colorectal cancer during 1996-1998. OUTCOME MEASURES: Logistic regression models were used to compare adherence to 'standard care' in the USA and Europe. Net survival and excess risk of death were estimated with flexible parametric models. RESULTS: The proportion of Dukes' A and B tumours was similar in the USA and Europe, while that of Dukes' C was more frequent in the USA (38% vs 21%) and of Dukes' D more frequent in Europe (22% vs 10%). Resection with curative intent was more frequent in the USA (85% vs 75%). Elderly patients (75-99 years) were 70-90% less likely to receive radiotherapy and chemotherapy. Age-standardised 5-year net survival was similar in the USA (58%) and Northern and Western Europe (54-56%) and lowest in Eastern Europe (42%). The mean excess hazard up to 5 years after diagnosis was highest in Eastern Europe, especially among elderly patients and those with Dukes' D tumours. CONCLUSIONS: The wide differences in colorectal cancer survival between Europe and the USA in the late 1990s are probably attributable to earlier stage and more extensive use of surgery and adjuvant treatment in the USA. Elderly patients with colorectal cancer received surgery, chemotherapy or radiotherapy less often than younger patients, despite evidence that they could also have benefited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: We investigated the potential influence of a moderate-to-high cardiovascular (CV) risk (CVR) (defined as a Systematic COronary Risk Evaluation model, or SCORE ≥ 4%), in the absence of an established CV disease, on the duration and cost of CV and non-CV sick leave (SL) resulting from common and occupational accidents or diseases. METHODS AND RESULTS: We conducted a prospective cohort study on 690 135 workers with a 1-year follow-up and examined CV- and non-CV-related SL episodes. To obtain baseline values, CVR factors were initially assessed at the beginning of the year during routine medical examination. The CVR was calculated with the SCORE charts for all subjects. Moderate-to-high CVR was defined as SCORE ≥ 4%. A baseline SCORE ≥ 4% was associated with a higher risk for long-term CV and non-CV SL, as revealed by follow-up assessment. This translated into an increased cost, estimated at euro5 801 464.18 per year. Furthermore, pharmacological treatment for hypertension or hyperlipidaemia was significantly associated with longer SL duration. CONCLUSION: Moderate-to-high CVR in asymptomatic subjects was significantly associated with the duration and cost of CV and non-CV SL. These results constitute the first body of evidence that the SCORE charts can be used to identify people with a non-established CV disease, which might ultimately translate into more lost workdays and therefore increased cost for society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart tissue inflammation, progressive fibrosis and electrocardiographic alterations occur in approximately 30% of patients infected by Trypanosoma cruzi, 10-30 years after infection. Further, plasma levels of tumour necrosis factor (TNF) and nitric oxide (NO) are associated with the degree of heart dysfunction in chronic chagasic cardiomyopathy (CCC). Thus, our aim was to establish experimental models that mimic a range of parasitological, pathological and cardiac alterations described in patients with chronic Chagas’ heart disease and evaluate whether heart disease severity was associated with increased TNF and NO levels in the serum. Our results show that C3H/He mice chronically infected with the Colombian T. cruzi strain have more severe cardiac parasitism and inflammation than C57BL/6 mice. In addition, connexin 43 disorganisation and fibronectin deposition in the heart tissue, increased levels of creatine kinase cardiac MB isoenzyme activity in the serum and more severe electrical abnormalities were observed in T. cruzi-infected C3H/He mice compared to C57BL/6 mice. Therefore, T. cruzi-infected C3H/He and C57BL/6 mice represent severe and mild models of CCC, respectively. Moreover, the CCC severity paralleled the TNF and NO levels in the serum. Therefore, these models are appropriate for studying the pathophysiology and biomarkers of CCC progression, as well as for testing therapeutic agents for patients with Chagas’ heart disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquest és un estudi retrospectiu que compara la mobilitat i el conflicto escàpulo-humeral entre 2 models diferents de pròtesi invertida d’espatlla. Aquestes pròtesis s’han implantat en pacients amb ruptures del manegot dels rotadors irreparables. Aquesta cirugía no està exenta de complicacions, i una de les més habituals és el conflicto escàpulo-humeral o notch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing and its three facets (Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS)) are terms that denote new developments in the software industry. In particular, PaaS solutions, also referred to as cloud platforms, are changing the way software is being produced, distributed, consumed, and priced. Software vendors have started considering cloud platforms as a strategic option but are battling to redefine their offerings to embrace PaaS. In contrast to SaaS and IaaS, PaaS allows for value co-creation with partners to develop complementary components and applications. It thus requires multisided business models that bring together two or more distinct customer segments. Understanding how to design PaaS business models to establish a flourishing ecosystem is crucial for software vendors. This doctoral thesis aims to address this issue in three interrelated research parts. First, based on case study research, the thesis provides a deeper understanding of current PaaS business models and their evolution. Second, it analyses and simulates consumers' preferences regarding PaaS business models, using a conjoint approach to find out what determines the choice of cloud platforms. Finally, building on the previous research outcomes, the third part introduces a design theory for the emerging class of PaaS business models, which is grounded on an extensive action design research study with a large European software vendor. Understanding PaaS business models from a market as well as a consumer perspective will, together with the design theory, inform and guide decision makers in their business model innovation plans. It also closes gaps in the research related to PaaS business model design and more generally related to platform business models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Type 2 diabetes mellitus (T2DM) is an emerging risk factor for cognitive impairment. Whether this impairment is a direct effect of this metabolic disorder on brain function, a consequence of vascular disease, or both, remains unknown. Structural and functional neuroimaging studies in patients with T2DM could help to elucidate this question. OBJECTIVE We designed a cross-sectional study comparing 25 T2DM patients with 25 age- and gender-matched healthy control participants. Clinical information, APOE genotype, lipid and glucose analysis, structural cerebral magnetic resonance imaging including voxel-based morphometry, and F-18 fluorodeoxyglucose positron emission tomography were obtained in all subjects. METHODS Gray matter densities and metabolic differences between groups were analyzed using statistical parametric mapping. In addition to comparing the neuroimaging profiles of both groups, we correlated neuroimaging findings with HbA1c levels, duration of T2DM, and insulin resistance measurement (HOMA-IR) in the diabetic patients group. Results: Patients with T2DM presented reduced gray matter densities and reduced cerebral glucose metabolism in several fronto-temporal brain regions after controlling for various vascular risk factors. Furthermore, within the T2DM group, longer disease duration, and higher HbA1c levels and HOMA-IR were associated with lower gray matter density and reduced cerebral glucose metabolism in fronto-temporal regions. CONCLUSION In agreement with previous reports, our findings indicate that T2DM leads to structural and metabolic abnormalities in fronto-temporal areas. Furthermore, they suggest that these abnormalities are not entirely explained by the role of T2DM as a cardiovascular risk factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document de l'arxiu adjunt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a parsimonious regime-switching approach to model the correlations between assets, the threshold conditional correlation (TCC) model. This method allows the dynamics of the correlations to change from one state (or regime) to another as a function of observable transition variables. Our model is similar in spirit to Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not suffer from the course of dimensionality. In particular, estimation of the parameters of the TCC involves a simple grid search procedure. In addition, it is easy to guarantee a positive definite correlation matrix because the TCC estimator is given by the sample correlation matrix, which is positive definite by construction. The methodology is illustrated by evaluating the behaviour of international equities, govenrment bonds and major exchange rates, first separately and then jointly. We also test and allow for different parts in the correlation matrix to be governed by different transition variables. For this, we estimate a multi-threshold TCC specification. Further, we evaluate the economic performance of the TCC model against a constant conditional correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that threshold correlation modelling gives rise to a significant reduction in portfolio´s variance.