947 resultados para parameter driven model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies single-channel speech separation, assuming unknown, arbitrary temporal dynamics for the speech signals to be separated. A data-driven approach is described, which matches each mixed speech segment against a composite training segment to separate the underlying clean speech segments. To advance the separation accuracy, the new approach seeks and separates the longest mixed speech segments with matching composite training segments. Lengthening the mixed speech segments to match reduces the uncertainty of the constituent training segments, and hence the error of separation. For convenience, we call the new approach Composition of Longest Segments, or CLOSE. The CLOSE method includes a data-driven approach to model long-range temporal dynamics of speech signals, and a statistical approach to identify the longest mixed speech segments with matching composite training segments. Experiments are conducted on the Wall Street Journal database, for separating mixtures of two simultaneous large-vocabulary speech utterances spoken by two different speakers. The results are evaluated using various objective and subjective measures, including the challenge of large-vocabulary continuous speech recognition. It is shown that the new separation approach leads to significant improvement in all these measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.