989 resultados para pacific decadal oscillation
Resumo:
A Pikea species attributed to Pikea californica Harvey has been established in England since at least 1967. Previously, this species was believed to occur only in Japan and Pacific North America. Comparative morphological studies on field-collected material and cultured isolates from England, California, and Japan and analysis of organellar DNA restriction fragment length polymorphisms, detected using labeled organellar DNA as a non-radioactive probe, showed that English Pikea is conspecific with P. californica from California. Both populations consist of dioecious gametophytes with heteromorphic life histories involving crustose tetrasporophytes; 96% of organellar DNA bands were shared between interoceanic samples. A second dioecious species of Pikea, P. pinnata Setchell In Collins, Holden et Setchell, grows sympatrically with P. californica near San Francisco but can be distinguished by softer texture, more regular branching pattern, and elongate cystocarpic axes. Pikea pinnata and P. californica samples shared 49-50% of organellar DNA bands, consistent with their being distinct species. Herbarium specimens of P. robusta Abbott resemble P. pinnata in some morphological features but axes are much wider; P. robusta may represent a further, strictly subtidal species but fertile material is unknown. Pikea thalli from Japan, previously attributed to P. californica and described here as Pikea yoshizakii sp. nov., are monoecious and show a strikingly different type of life history. After fertilization, gonimoblast filaments grow outward through the cortex and form tetrasporangial nemathecia; released tetraspores develop directly into erect thalli. Tetrasporoblastic life histories are characteristic of certain members of the Phyllophoraceae but were previously unknown in the Dumontiaceae. Japanese P. yoshizakii shared 55 and 56% of organellar DNA bands with P. californica and P. pinnata, respectively phylogenetic analysis indicated equally distant relationships to both species. Pikea yoshizakii or a closely similar species with the same life history occurs in southern California and Mexico.
Resumo:
A combined geomorphological–physical model approach is used to generate three-dimensional reconstructions of glaciers in Pacific Far NE Russia during the global Last glacial Maximum (gLGM). The horizontal dimensions of these ice masses are delineated by moraines, their surface elevations are estimated using an iterative flowline model and temporal constraints upon their margins are derived from published age estimates. The equilibrium line altitudes (ELAs) of these ice masses are estimated, and gLGM climate is reconstructed using a simple degree–day melt model. The results indicate that, during the gLGM, ice masses occupying the Pekulney, Kankaren and Sredinny mountains of Pacific Far NE Russia were of valley glacier and ice field type. These glaciers were
between 7 and 80 km in length, and were considerably less extensive than during pre-LGM phases of advance. gLGM ice masses in these regions had ELAs of between 575± 22m and 1035±41m (above sea level) – corresponding to an ELA depression of 350–740 m, relative to present. Data indicate that, in the Pekulney Mountains, this ELA depression occurred because of a 6.48°C reduction
in mean July temperature, and 200mm a¯¹ reduction in precipitation, relative to present. Thus reconstructions support a restricted view of gLGM glaciation in Pacific Far NE Russia and indicate that the region’s aridity precluded the development of large continental ice sheets.
Resumo:
Would multinational corporation (MNC) subsidiaries be more profitable in host countries where corruption is less severe? Would MNC subsidiaries be more profitable in less corrupt countries if they focus on local sales? This paper examines the impact of the level of corruption on the profitability of US MNCs in the Asia Pacific region. Using foreign direct investment (FDI) data archived by the US Bureau of Economic Analysis and corruption data reported by the World Bank, we find that MNC subsidiaries located in countries with a lower level of corruption are more profitable. In addition, MNC subsidiaries with a greater focus on local sales are more profitable when the corruption level is low. This study contributes to the literature by showing that when local sales are important to MNC subsidiaries, a lower level of corruption by host countries positively affects the profitability of the MNC subsidiaries.
Resumo:
The distribution of glacial cirques upon the Kamchatka peninsula, Far Eastern Russia, is systematically mapped from satellite images and digital elevation model data. A total of 3,758 cirques are identified, 238 of which are occupied by active glaciers. The morphometry of the remaining 3,520 cirques is analysed. These cirques are found to show a very strong N bias in their azimuth (orientation), likely resulting from aspect-related variations in insolation. The strength of this N bias is considered to indicate that former glaciation upon the peninsula was often ‘marginal’, and mainly of cirque-type, with peaks extending little above regional equilibrium-line altitudes. This is supported by the fact that S and SE-facing cirques are the highest in the dataset, suggesting that glacier-cover was rarely sufficient to allow S and SE-facing glaciers to develop at low altitudes. The strength of these azimuth-related variations in cirque altitude is thought to reflect comparatively cloud-free conditions during former periods of glaciation. It is suggested that these characteristics, of marginal glaciation and comparatively cloud-free conditions, reflect the region’s former aridity, which was likely intensified at the global Last Glacial Maximum, and during earlier periods of ice advance, as a result of the development of negative pressure anomalies over the North Pacific (driven by the growth of the Laurentide Ice Sheet), combined with other factors, including an increase in the extent and duration of sea ice, a reduction in global sea levels, cooler sea surface temperatures, and the localised growth of mountain glaciers. There is published evidence to suggest extensive glaciation of the Kamchatka Peninsula at times during the Late Quaternary, yet the data presented here appears to suggest that such phases were comparatively short-lived, and that smaller cirque-type glaciers were generally more characteristic of the period.
Resumo:
Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2a phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2a. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.
Resumo:
The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly-fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This paper presents a measurement based method for the early detection of power system oscillations, with attention to mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet transform and support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in different frequency bands, while SVDD is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude or that are resonant can be alarmed to the system operator, to reduce the risk of system instability. Method evaluation is exemplified used real data from a chosen wind farm.
Resumo:
We investigate the dynamics of two interacting bosons repeatedly scattering off a beam-splitter in a free oscillation atom interferometer. Using the interparticle scattering length and the beam-splitter probabilites as our control parameters, we show that even in a simple setup like this a wide range of strongly correlated quantum states can be created. This in particular includes the NOON state, which maximizes the quantum Fisher information and is a foremost state in quantum metrology. DOI: 10.1103/PhysRevA.87.043630
Resumo:
In this study, contributions of both local steric and remote baroclinic effects (i.e., steric variations external to the region of interest) to the inter-annual variability of winter sea level in the North Sea, with respect to the North Atlantic Oscillation (NAO), for the period of 1953–2010 are investigated. On inter-annual time scales in this period, the NAO is significantly correlated to sea level variations in the North Sea only in the winter months (December–March), while its correlation to sea temperature over much of the North Sea is only significant in January and February. The discrepancy in sea level between observations and barotropic tide and surge models forced by tides and local atmospheric forcing, i.e., local atmospheric pressure effects and winds, in the present study are found to be consistent with previous studies. In the North Sea, local thermosteric effects caused by thermal expansion play a minor role on winter-mean NAO related sea level variability compared with atmospheric forcing. This is particularly true in the southeastern North Sea where water depths are mostly less than 25 m. Our calculations demonstrate that the discrepancy can be mostly explained by remote baroclinic effects, which appear as water mass exchanges on the continental shelf and are therefore only apparent in ocean bottom pressure. In the North Sea, NAO related sea level variations seem to be a hybrid of barotropic and baroclinic processes. Hence, they can only be adequately modelled with three-dimensional baroclinic ocean models that include contributions of baroclinic effects and large-scale atmospheric forcing external to the region of interest.
Resumo:
Modal analysis is a popular approach used in structural dynamic and aeroelastic problems due to its efficiency. The response of a structure is compo
sed of the sum of orthogonal eigenvectors or modeshapes and corresponding modal frequencies. This paper investigates the importance of modeshapes on the aeroelastic response of the Goland wing subject to structural uncertainties. The wing undergoes limit cycle oscillations (LCO) as a result of the inclusion of polynomial stiffness nonlinearities. The LCO computations are performed using a Harmonic Balance approach for speed, the modal properties of the system are extracted from MSC NASTRAN. Variability in both the wing’s structure and the store centre of gravity location is investigated in two cases:- supercritical and subcritical type LCOs. Results show that the LCO behaviour is only sensitive to change in modeshapes when the nature of the modes are changing significantly.
Resumo:
Two case studies are presented in this paper to demonstrate the impact of different power system operation conditions on the power oscillation frequency modes in the Irish power system. A simplified 2 area equivalent of the Irish power system has been used in this paper, where area 1 represents the Republic of Ireland power system and area 2 represents the Northern Ireland power system.
The potential power oscillation frequency modes on the interconnector during different operation conditions have been analysed in this paper. The main objective of this paper is to analyse the influence of different operation conditions involving wind turbine generator (WTG) penetration on power oscillation frequency modes using phasor measurement unit (PMU) data.
Fast Fourier transform (FFT) analysis was performed to identify the frequency oscillation mode while correlation coefficient analysis was used to determine the source of the frequency oscillation. The results show that WTG, particularly fixed speed induction generation (FSIG), gives significant contribution to inter-area power oscillation frequency modes during high WTG operation.
Resumo:
The ~16-ka-long record of explosive eruptions from Shiveluch volcano (Kamchatka, NW Pacific) is refined using geochemical fingerprinting of tephra and radiocarbon ages. Volcanic glass from 77 prominent Holocene tephras and four Late Glacial tephra packages was analyzed by electron microprobe. Eruption ages were estimated using 113 radiocarbon dates for proximal tephra sequence. These radiocarbon dates were combined with 76 dates for regional Kamchatka marker tephra layers into a single Bayesian framework taking into account the stratigraphic ordering within and between the sites. As a result, we report ~1,700 high-quality glass analyses from Late Glacial–Holocene Shiveluch eruptions of known ages. These define the magmatic evolution of the volcano and provide a reference for correlations with distal fall deposits. Shiveluch tephras represent two major types of magmas, which have been feeding the volcano during the Late Glacial–Holocene time: Baidarny basaltic andesites and Young Shiveluch andesites. Baidarny tephras erupted mostly during the Late Glacial time (~16–12.8 ka BP) but persisted into the Holocene as subordinate admixture to the prevailing Young Shiveluch andesitic tephras (~12.7 ka BP–present). Baidarny basaltic andesite tephras have trachyandesite and trachydacite (SiO2 < 71.5 wt%) glasses. The Young Shiveluch andesite tephras have rhyolitic glasses (SiO2 > 71.5 wt%). Strongly calc-alkaline medium-K characteristics of Shiveluch volcanic glasses along with moderate Cl, CaO and low P2O5 contents permit reliable discrimination of Shiveluch tephras from the majority of other large Holocene tephras of Kamchatka. The Young Shiveluch glasses exhibit wave-like variations in SiO2 contents through time that may reflect alternating periods of high and low frequency/volume of magma supply to deep magma reservoirs beneath the volcano. The compositional variability of Shiveluch glass allows geochemical fingerprinting of individual Shiveluch tephra layers which along with age estimates facilitates their use as a dating tool in paleovolcanological, paleoseismological, paleoenvironmental and archeological studies. Electronic tables accompanying this work offer a tool for statistical correlation of unknown tephras with proximal Shiveluch units taking into account sectors of actual tephra dispersal, eruption size and expected age. Several examples illustrate the effectiveness of the new database. The data are used to assign a few previously enigmatic wide-spread tephras to particular Shiveluch eruptions. Our finding of Shiveluch tephras in sediment cores in the Bering Sea at a distance of ~600 km from the source permits re-assessment of the maximum dispersal distances for Shiveluch tephras and provides links between terrestrial and marine paleoenvironmental records.
Resumo:
We analyze and interpret the oscillatory signal in the decay phase of the U-band light curve of a stellar megaflare observed on 2009 January 16 on the dM4.5e star YZ CMi. The oscillation is well approximated by an exponentially decaying harmonic function. The period of the oscillation is found to be 32 minutes, the decay time about 46 minutes, and the relative amplitude 15%. As this observational signature is typical of the longitudinal oscillations observed in solar flares at extreme ultraviolet and radio wavelengths, associated with standing slow magnetoacoustic waves, we suggest that this megaflare may be of a similar nature. In this scenario, macroscopic variations of the plasma parameters in the oscillations modulate the ejection of non-thermal electrons. The phase speed of the longitudinal (slow magnetoacoustic) waves in the flaring loop or arcade, the tube speed, of about 230 km s-1 would require a loop length of about 200 Mm. Other mechanisms, such as standing kink oscillations, are also considered.