965 resultados para p21 ras
Resumo:
RhoH is a member of the Rho (ras homologous) GTPase family, yet it lacks GTPase activity and thus remains in its active conformation. Unlike other Rho GTPases, the RhoH gene transcript is restricted to hematopoietic cells and RhoH was shown to be required for adequate T-cell activation through the TCR. Here, we demonstrate that both blood T and B cells, but not neutrophils or monocytes, express RhoH protein under physiological conditions. Upon TCR complex activation, RhoH was degraded in lysosomes of primary and Jurkat T cells. Pharmacologic activation of T cells distal to the TCR complex had no effect on RhoH protein levels suggesting that early events during T-cell activation are required for RhoH protein degradation. In contrast to T cells, activation of the BCR in blood B cells was not associated with changes in RhoH levels. These data suggest that RhoH function might be regulated by lysosomal degradation of RhoH protein following TCR complex but not BCR activation. This newly discovered regulatory pathway of RhoH expression might limit TCR signaling and subsequent T-cell activation upon Ag contact.
Resumo:
We have previously shown that EphB4 and ephrin-B2 are differentially expressed in the mammary gland and that their deregulated expression in the mammary epithelium of transgenic mice leads to perturbations of the mammary parenchyma and vasculature. In addition, overexpression of EphB4 and expression of a truncated ephrin-B2 mutant, capable of receptor stimulation but incapable of reverse signalling, confers a metastasising phenotype on NeuT initiated mouse mammary tumours. We have taken advantage of this transgenic tumour model to compare stem cell characteristics between the non-metastasising and metastasising mammary tumours. We analysed the expression of the proliferation attenuating p21(waf) gene, which was significantly increased in the metastasising tumours. Moreover, we compared the expression of CK-19, Sca-1, CD24 and CD49f as markers for progenitor cells exhibiting a decreasing differentiation grade. Sca-1 expressing cells were the earliest progenitors detected in the non-metastasising NeuT induced tumours. The metastasising NeuT/EphB4 tumours were enriched in CD24 expressing cells, whereas the metastasising NeuT/truncated ephrin-B2 tumours contained in addition significant amounts of CD49f expressing cells. The same cell populations were also enriched in mammary glands of single transgenic MMTV-EphB4 and MMTV-truncated ephrin-B2 females indicating that deregulated EphB4-ephrin-B2 signalling interferes with the homeostasis of the stem/progenitor cell pool before tumour formation is initiated. Since the same cell populations are enriched in the normal tissue, primary mammary tumours and metastases we conclude that these progenitor cells were the origin of tumour formation and that this change in the tumour origin has led to the acquisition of the metastatic tumour phenotype.
Resumo:
Zweifelsohne war und ist das Prinzip der Chancengleichheit – gleiches Recht auf Entfaltung ungleicher Anlagen – eine Maxime für die Bildungspolitik und Gestal-tung von Bildungssystemen (vgl. Müller 1998; Friedeburg 1992; Baumert 1991: 333). Diese Prämisse wird nicht zuletzt durch Artikel 3, Absatz 3 des Grundgeset-zes, wonach niemand wegen seines Geschlechts, seiner Abstammung, seiner Ras-se, seiner Sprache, seiner Heimat und Herkunft, seines Glaubens, seiner religiösen oder politischen Anschauungen benachteiligt oder bevorzugt werden darf, inhalt-lich vorgegeben. So lag ein Hauptteil der Zielsetzungen von Bildungsreformen seit den 1960er Jahren darin, die Rahmenbedingungen für den Bildungszugang – für die Chancennutzung – in der Weise zu setzen, dass weder das strukturelle Angebot an Bildungsgelegenheiten noch sozialstrukturelle Eigenschaften von Schulkindern und ihres Elternhauses systematische Einflüsse auf den Bildungsweg und den Erwerb von Bildungszertifikaten haben (Friedeburg 1992). Mit dem Ausbau des Schul- und Hochschulwesens und den institutionellen Reformen seit den 1960er Jahren ist das Ziel auch größtenteils erreicht worden, dass neben institutionellen Barrieren auch ökonomische und geografische Barrieren beim Bildungszugang weitgehend an Bedeutung verloren haben (Müller 1998; Krais 1996). Bildungs-disparitäten nach sozialstrukturellen Merkmalen wie etwa Klassenlage des Eltern-hauses haben sich ebenfalls bis zu einem bestimmten Grad abgeschwächt (Müller und Haun 1994; Schimpl-Neimanns 2000). Insbesondere konnten Mädchen ihre Bildungsdefizite gegenüber den Jungen mehr als ausgleichen (Rodax und Rodax 1996; Rodax 1995), sodass nunmehr von einer Bildungsungleichheit zu Unguns-ten von Jungen auszugehen ist (Diefenbach und Klein 2002; Becker 2007). Einige der beabsichtigten wie unbeabsichtigten Folgen dieser Reformbemühungen kön-nen am Wandel der Bildungsbeteiligung, insbesondere beim Übergang von der Grundschule auf das Gymnasium, abgelesen werden (Becker 2006).
Resumo:
In 2000, fishermen reported the appearance of deformed reproductive organs in whitefish (Coregonus spp.) from Lake Thun, Switzerland. Despite intensive investigations, the causes of these abnormalities remain unknown. Using gene expression profiling, we sought to identify candidate genes and physiological processes possibly associated with the observed gonadal deformations, in order to gain insights into potential causes. Using in situ-synthesized oligonucleotide arrays, we compared the expression levels at 21,492 unique transcript probes in liver and head kidney tissue of male whitefish with deformed and normally developed gonads, respectively. The fish had been collected on spawning sites of two genetically distinct whitefish forms of Lake Thun. We contrasted the gene expression profiles of 56 individuals, i.e., 14 individuals of each phenotype and of each population. Gene-by-gene analysis revealed weak expression differences between normal and deformed fish, and only one gene, ictacalcin, was found to be up-regulated in head kidney tissue of deformed fish from both whitefish forms, However, this difference could not be confirmed with quantitative real-time qPCR. Enrichment analysis on the level of physiological processes revealed (i) the involvement of immune response genes in both tissues, particularly those linked to complement activation in the liver, (ii) proteolysis in the liver and (iii) GTPase activity and Ras protein signal transduction in the head kidney. In comparison with current literature, this gene expression pattern signals a chronic autoimmune disease in the testes. Based on the recent observations that gonad deformations are induced through feeding of zooplankton from Lake Thun we hypothesize that a xenobiotic accumulated in whitefish via the plankton triggering autoimmunity as the likely cause of gonad deformations. We propose several experimental strategies to verify or reject this hypothesis.
Resumo:
The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.
Resumo:
FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs.
Resumo:
Brain tumors comprise a wide variety of neoplasia classified according to their cellular origin and their morphological and histological characteristics. The transformed phenotype of brain tumor cells has been extensively studied in the past years, achieving a significant progress in our understanding of the molecular pathways leading to tumorigenesis. It has been reported that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is frequently altered in grade IV brain tumors resulting in uncontrolled cell growth, survival, proliferation, angiogenesis, and migration. This aberrant activation can be explained by oncogenic mutations in key components of the pathway or through abnormalities in its regulation. These alterations include overexpression and mutations of receptor tyrosine kinases (RTKs), mutations and deletions of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, encoding a lipid kinase that directly antagonized PI3K activity, and alterations in Ras signaling. Due to promising results of preclinical studies investigating the PI3K/AKT pathway in grade IV brain tumors like glioblastoma and medulloblastoma, the components of this pathway have emerged as promising therapeutic targets to treat these malignant brain tumors. Although an arsenal of small molecule inhibitors that target specific components of this signaling pathway is being developed, its successful application in the clinics remains a challenge. In this article we will review the molecular basis of the PI3K/AKT signaling pathway in malignant brain tumors, mainly focusing on glioblastoma and medulloblastoma, and we will further discuss the current status and potential of molecular targeted therapies.
Resumo:
Transforming growth factor-β (TGFβ) plays an important role in breast cancer metastasis. Here phosphoinositide 3-kinase (PI3K) signalling was found to play an essential role in the enhanced migration capability of fibroblastoid cells (FibRas) derived from normal mammary epithelial cells (EpH4) by transduction of oncogenic Ras (EpRas) and TGFβ1. While expression of the PI3K isoform p110δ was down-regulated in FibRas cells, there was an increase in the expression of p110α and p110β in the fibroblastoid cells. The PI3K isoform p110β was found to specifically contribute to cell migration in FibRas cells, while p110α contributed to the response in EpH4, EpRas and FibRas cells. Akt, a downstream targets of PI3K signalling, had an inhibitory role in the migration of transformed breast cancer cells, while Rac, Cdc42 and the ribosomal protein S6 kinase (S6K) were necessary for the response. Together our data reveal a novel specific function of the PI3K isoform p110β in the migration of cells transformed by oncogenic H-Ras and TGF-β1.
Resumo:
Alterations of the epidermal growth factor receptor (EGFR) can be observed in a significant subset of esophageal adenocarcinomas (EACs), and targeted therapy against EGFR may become an interesting approach for the treatment of these tumors. Mutations of KRAS, NRAS, BRAF, and phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) and deregulation of PTEN expression influence the responsiveness against anti-EGFR therapy in colorectal carcinomas. We investigated the prevalence of these events in a collection of 117 primary resected EACs, correlated the findings with EGFR expression and amplification, and determined their clinicopathologic impact. KRAS mutations were detected in 4 (3%) of 117 tumors (3× G12D and 1 G12V mutation). One tumor had a PIK3CA E545K mutation. Neither NRAS nor BRAF mutations were detected. Sixteen (14%) of 117 cases were negative for PTEN expression, determined by immunohistochemistry. Loss of PTEN was observed predominantly in advanced tumor stages (P = .004). There was no association between PTEN and EGFR status. Loss of PTEN was associated with shorter overall and disease-free survival (P < .001 each) and also an independent prognostic factor in multivariate analysis (P = .015). EGFR status had no prognostic impact in this case collection. In summary, loss of PTEN can be detected in a significant subset of EAC and is associated with an aggressive phenotype. Therefore, PTEN may be useful as a prognostic biomarker. In contrast, mutations of RAS/RAF/PIK3CA appear only very rarely, if at all, in EAC. A possible predictive role of PTEN in anti-EGFR treatment warrants further investigations, whereas determination of RAS/RAF/PIK3CA mutations may only have a minor impact in this context.
Resumo:
To assess whether blockade of the renin-angiotensin system (RAS), a recognized strategy to prevent the progression of diabetic nephropathy, affects renal tissue oxygenation in type 2 diabetes mellitus (T2DM) patients.
Resumo:
Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.
Resumo:
Infection of canine footpads with the canine distemper virus (CDV) can cause massive epidermal thickening (hard pad disease), as a consequence of increased proliferation of keratinocytes and hyperkeratosis. Keratinocytes of canine footpad epidermis containing detectable CDV nucleoprotein antigen and CDV mRNA were shown previously to have increased proliferation indices. Because various proteins that play a role in the proliferation of epidermal cells are viral targets, the potential participation of such proteins in CDV-associated keratinocyte proliferation was investigated. Transforming growth factor-alpha (TGF-alpha), cell cycle regulatory proteins p21, p27 and p53, and nuclear factor (NF)-kappaB transcription factor components p50 and p65 were studied in the footpad epidermis from the following groups of dogs inoculated with CDV: group 1, consisting of seven dogs with clinical distemper and CDV in the footpad epidermis; group 2, consisting of four dogs with clinical distemper but no CDV in the footpad epidermis; group 3, consisting of eight dogs with neither clinical distemper nor CDV in the footpad epithelium. Group 4 consisted of two uninoculated control dogs. The expression of TGF-alpha, p21, p27 and p53, and p50 in the basal layer, lower and upper spinous layers, and in the granular layer did not differ statistically between CDV-positive (group 1) and CDV-negative (groups 2-4) footpad epidermis. However, there were differences in the levels of nuclear and cytoplasmic p65 expression between group 1 dogs and the other three groups. Thus, footpads from group 1 dogs had more keratinocytes containing p65 in the cytoplasm and, conversely, fewer nuclei that were positive for p65. These findings indicate that p65 translocation into the nucleus is reduced in CDV-infected footpad epidermis. Such decreased translocation of p65 may help to explain increased keratinocyte proliferation in hard pad disease and suggests interference of CDV with the NF-kappaB pathway.
Resumo:
Sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) pumps belong to the family of Ca2+-ATPases responsible for the maintenance of calcium in the endoplasmic reticulum. In epidermal keratinocytes, SERCA2-controlled calcium stores are involved in cell cycle exit and onset of terminal differentiation. Hence, their dysfunction was thought to provoke impaired keratinocyte cohesion and hampered terminal differentiation. Here, we assessed cultured keratinocytes and skin biopsies from a canine family with an inherited skin blistering disorder. Cells from lesional and phenotypically normal areas of one of these dogs revealed affected calcium homeostasis due to depleted SERCA2-gated stores. In phenotypically normal patient cells, this defect compromised upregulation of p21(WAF1) and delayed the exit from the cell cycle. Despite this abnormality it failed to impede the terminal differentiation process in the long term but instead coincided with enhanced apoptosis and appearance of chronic wounds, suggestive of secondary mutations. Collectively, these findings provide the first survey on phenotypic consequences of depleted SERCA-gated stores for epidermal homeostasis that explain how depleted SERCA2 calcium stores provoke focal lesions rather than generalized dermatoses, a phenotype highly reminiscent of the human genodermatosis Darier disease.
Resumo:
Malignant pleural mesotheliomas (MPMs) are usually wild type for the p53 gene but contain homozygous deletions in the INK4A locus that encodes p14(ARF), an inhibitor of p53-MDM2 interaction. Previous findings suggest that lack of p14(ARF) expression and the presence of SV40 large T antigen (L-Tag) result in p53 inactivation in MPM. We did not detect SV40 L-Tag mRNA in either MPM cell lines or primary cultures, and treatment of p14(ARF)-deficient cells with cisplatin (CDDP) increased both total and phosphorylated p53 and enhanced p53 DNA-binding activity. On incubation with CDDP, levels of positively regulated p53 transcriptional targets p21(WAF), PIG3, MDM2, Bax, and PUMA increased in p14(ARF)-deficient cells, whereas negatively regulated survivin decreased. Significantly, p53-induced apoptosis was activated by CDDP in p14(ARF)-deficient cells, and treatment with p53-specific siRNA rendered them more CDDP-resistant. p53 was also activated by: 1) inhibition of MDM2 (using nutlin-3); 2) transient overexpression of p14(ARF); and 3) targeting of survivin using antisense oligonucleotides. However, it is noteworthy that only survivin downregulation sensitized cells to CDDP-induced apoptosis. These results suggest that p53 is functional in the absence of p14(ARF) in MPM and that targeting of the downstream apoptosis inhibitor survivin can sensitize to CDDP-induced apoptosis.
Resumo:
BACKGROUND: The remarkable patency of internal mammary artery (MA) grafts compared to saphenous vein (SV) grafts has been related to different biological properties of the two blood vessels. We examined whether proliferation and apoptosis of vascular smooth muscle cells (VSMC) from human coronary artery bypass vessels differ according to patency rates. METHODS AND RESULTS: Proliferation rates to serum or platelet-derived growth factor (PDGF)-BB were lower in VSMC from MA than SV. Surface expression of PDGF beta-receptor was slightly lower, while that of alpha-receptor was slightly higher in MA than SV. Cell cycle distribution, expression of cyclin E, cdk2, p21, p27, p57, and cdk2 kinase activity were identical in PDGF-BB-stimulated cells from MA and SV. However, apoptosis rates were higher in MA than SV determined by lactate dehydrogenase release, DNA fragmentation, and Hoechst 33258 staining. Moreover, caspase inhibitors (Z-VAD-fmk, Boc-D-fmk) abrogated the different proliferation rates of VSMC from MA versus SV. Western blotting and GSK3-beta kinase assay revealed lower Akt activity in VSMC from MA versus SV, while total Akt expression was identical. Adenoviral transduction of a constitutively active Akt mutant abrogated the different proliferation rates of VSMC from MA versus SV. CONCLUSIONS: Higher apoptosis rates due to lower Akt activity rather than different cell cycle regulation account for the lower proliferation of VSMC from MA as compared to SV. VSMC apoptosis may protect MA from bypass graft disease.