1000 resultados para oxygen affinity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have considered the chemistry occuring in the circumstellar envelope surrounding an oxygen-rich AGE star and have specifically modelled 4 sources; R Dor, TX Cam, OH231.8+4.2 and IK Tau. Methane has been assumed to be a parent molecule and the resulting carbon chemistry is investigated. We find that carbon chain molecules up to C2H4 can be abundant as can CH3CN and CH3OH. Our model extends previous work by including the chemistry of silicon, chlorine and phosphorus. The presence of CH4 as a parent and hence its daughter species CH3 and CH3+ leads to other carbon-bearing species such as H2CS, SiCH2, H2CN and CCl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We test the hypothesis that methane is the source of the carbon observed in carbon-bearing molecules around oxygen-rich stars, by considering the synthesis of formaldehyde which is formed in the reaction between oxygen atoms and methyl radicals. We find that, provided that the parent methane abundance is large enough, millimetre-wave emission lines of H2CO should be detectable in such stars. We also consider the formation of other species, notably H2CN and H2CS, from methyl radicals, but conclude that they will be at least one order of magnitude less abundant than H2CO and therefore not detectable with current instrumentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following a suggestion of Blake et al., we have attempted to account for the unusually large abundances of selected oxygen-containing organic molecules in the so-called

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface intermediate with a C/N ratio close to 3 has been shown by TPD to form at co-adsorption of NO and propane as well as NO, propane and O-2 On low-exchanged Cu-ZSM-5. The adsorption of NO, propane and oxygen has been studied to evaluate their effect on the formation of this complex. Its formation is accompanied by a decrease in the concentration of surface nitrite-nitrate. The kinetics of nitrite-nitrate adspecies formation as a function of the reagents concentration and temperature has been investigated. Some NO adspecies have been found to decompose yielding N2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust thin-film oxygen sensors were fabricated by encapsulating a lipophilic, polynuclear gold(I) complex, bis{m-(bis(diphenylphosphino)octadecylamine-P,P')}dichlorodigold(I), in oxygen permeable polystyrene and ormosil matrices. Strong phosphorescence, which was quenched by gaseous and dissolved oxygen, was observed from both matrices. The polystyrene encapsulated dye exhibited downward-turning Stern-Volmer plots which were well fitted by a two-site model. The ormosil trapped complex showed linear Stern-Volmer plots for dissolved oxygen quenching but was downward turning for gaseous oxygen. No leaching was observed when the ormosil based sensors were immersed in flowing water over an 8 h period. Both films exhibited fully reversible response and recovery to changing oxygen concentration with rapid response times. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation and characterisation of a novel, UV-activated, solvent-based, colourimetric indicator for oxygen is described, comprising a redox dye (methylene blue, MB), semiconductor photocatalyst (Pt-TiO2), and a sacrificial electron donor (SED = glycerol), all dispersed/dissolved in a polymer medium (sulfonated polystyrene. SPS). Upon exposure to UVA light, the Pt-TiO2/MB/glycerol/SPS oxygen indicator is readily photobleached as the MB is converted into its oxygen-sensitive, leuco form, LMB. In contrast to its non-platinised TiO2 counterpart (TiO2/MB/glycerol/SPS oxygen indicator), the recovery of the original colour is faster (ca. 1.5 days cf. 5 days at 21 degrees C). This is due to the catalytic action of the 0.38 wt% platinum loaded onto the semiconductor photocatalyst. TiO2, on the oxidation of the photogenerated LMB by ambient O-2. Furthermore, by increasing the level of platinum loading, recovery times can be decreased further; e.g. a Pt-TiO2/MB/glycerol/SPS oxygen indicator with platinum level of 1.52 wt% recovers fully within 12 h. A study of the kinetics of recovery as a function of film thickness revealed the recovery step is not controlled by the diffusion of O-2 through the film, but instead dependent upon the slow rate of oxidation of LMB to MB by O-2 in the low dielectric polymer encapsulation medium. Other work showed this recovery is only moderately dependant upon temperatures above -10 degrees C and very sensitive to relative humidity above 30% RH. Potential uses of this UV light activated indicator are discussed briefly. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation and characterisation of a novel, UV-activated solvent-based, colourimetric indicator for O-2 is described, comprising a redox dye (methylene blue, MB), semiconductor photocatalyst (TiO2), and a sacrificial electron donor (SED), all dispersed/dissolved in a polymer medium (sulfonated polystyrene, SPS). Upon exposure, the indicator is readily photobleached as the MB is converted into its oxygen-sensitive, leuco form, LMB. Unlike its water-based counterpart, the recovery of the original colour is very slow (ca. 5 days cf. 6 min), probably due to the largely hydrophobic nature of the polymer encapsulation medium. The kinetics of film photobleaching appear to fit very well, in terms of: irradiance, [TiO2] and [MB], to the usual Langmuir-Hinshelwood type equation associated with a photocatalytic process. The glycerol appears not only to function as a SED, but also a plasticizer and medium for dye dissolution. The kinetics of colour recovery of the photobleached film appear directly dependent upon the ambient level of O-2 but shows a more complex dependence upon the relative humidity, RH. The photobleached film does not recover any of its colour over a 24 h period if the RH

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several commercial titania photocatalyst powders were formed into thin (ca. 350 mu m), 25 mm diameter ceramic wafers, sputter deposited with Pt on one side. The activities of each of the ceramic wafers were tested for hydrogen and oxygen evolution from aqueous sacrificial systems. The commercial sample PC50 (Millennium Chemicals, UK) yielded reproducible ceramic wafers with high activity for water photoreduction. Many of the ceramic wafers displayed low water photo-oxidation activities; however, these were greatly increased with addition of a NiO co-catalyst. In a selected case, hydrogen evolution activity was compared between a PC50 wafer and an identical weight of platinised PC50 powder suspension. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline SnO2, ncSnO(2), is used as a photosensitiser in a colourimetric O-2 indicator that comprises a sacrificial electron donor, glycerol, a redox dye, methylene blue (MB), and an encapsulating polymer, hydroxyethyl cellulose (HEC). Upon exposure to a burst of UVB light the indicator is activated (photo-bleached) as the MB is photoreduced by the ncSnO(2) particles. In the absence of oxygen, the film stays bleached, but recovers its original colour upon exposure to oxygen. Unlike its TiO2-based predecessor, the HEC/glycerol/MB/ncSnO(2) O-2 indicator is not activated by UVA light from white fluorescent lamps, but is by UVB light. This feature provides much greater control in the activation of the indicator. Other work shows the rate of activation depends upon I-0.75, where I is the UVB irradiance, indicating a partial dependence upon the electron-hole recombination process. The half-life of the recovery of the original colour of a UV-activated film, t(50), is directly proportional to the ambient level of oxygen. The advantages of using this indicator in modified atmosphere packaging as a possible quality assurance indicator are discussed briefly. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solvent-based, irreversible oxygen indicator ink is described, comprising semiconductor photocatalyst nanoparticles, a solvent-soluble redox dye, mild reducing agent and polymer. Based on such an ink, a film - made of titanium dioxide, a blue, solvent-soluble, coloured ion-paired methylene blue dye, glycerol and the polymer zein - loses its colour rapidly (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO2) films and molecular oxygen. TiO2 films from three different starting materials (TiO2 anatase colloidal paste and commercial anatase/rutile powders Degussa TiO2 P25 and VP TiO2 P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO2 colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO2 particles.