972 resultados para organic matter input


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monsoon climate is an important component of the global climatic system. A comprehensive understanding of its variability over glacial-interglacial time scales as well as of its effects on the continent and in the ocean is required to decipher links between climate, continental weathering and productivity. A detailed multiproxy study, including bulk and clay mineralogy, grain-size analysis, phosphorus geochemistry (SEDEX extraction), organic matter characterization, and nitrogen stable isotopes, was carried out on samples from ODP Sites 1143 and 1144 (Leg 184, South China Sea), covering the past 140 000 years. We tentatively reconstruct the complex sedimentation and climatic history of the region during the last glacial-interglacial cycle, when sea-level variations, linked to the growth and melting of ice caps, interact with monsoon variability. During interglacial periods of high sea level, summer monsoon was strong, and humid and warm climate characterized the adjacent continent and islands. Clay minerals bear signals of chemical weathering during these intervals. High calcite and reactive phosphorus mass accumulation rates (MARs) indicate high productivity, especially in the southern region of the basin. During glacial intervals, strong winter monsoon provided enhanced detrital input from the continent, as indicated by high detrital MAR. Glacial low sea level resulted in erosion of sediments from the exposed Sunda shelf to the south, and clay mineral variations indicate that warm and humid conditions still prevailed in the southern tropical areas. Enhanced supply of nutrients from the continent, both by river and eolian input, maintained high primary productivity. Reduced circulation during these periods possibly induced active remobilization of nutrients, such as phosphorus, from the sediments. Intense and short cold periods recorded during glacial and interglacial stages correlate with loess records in China and marine climatic records in the North Atlantic, confirming a teleconnection between low- and high-latitude climate variability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the framework of a multidisciplinary research program, an organic geochemical study was carried out on a drill core which comprises a 245 m thick sequence of light-colored, Upper Albian marlstones that were deposited in the central part of the Lower Saxony basin (northern Germany). For part of the Upper Albian sequence, high-resolution measurements of carbonate contents reveal cycles which can be related to earth orbital forcing. Based on these data, sediment accumulation rates were calculated to be in the order of 15 g/m**2/yr. These high accumulation rates contrast with very low organic carbon contents and an extremely poor preservation of the autochthonous organic matter. Most of the sedimentary organic matter is of terrigenous origin and mainly derived from the erosion of older sedimentary rocks. Organic petrography reveals only a very small fraction of marine organic particles. Carbon/sulphur ratios, pristane/phytane ratios as well as the predominance of resedimented organic particles over autochthonous organic particles suggest that aerobic degradation processes rather than anaerobic processes (sulphate reduction) were responsible for the degradation of the organic matter. Furthermore, the scarcity of terrigenous organic particles (vitrinite) indicates that there was little vegetation on nearby land areas. To explain these analytical results, a depositional model was developed which could explain the scarcity of organic matter in the Upper Albian sediments. This model is based on downwelling of oxygen-rich, saline waters of Tethyan origin, which reduces the nutrient content of surface waters and thus primary bioproductivity while degradation of primary organic matter in the water column is enhanced at the same time. These conditions contrast to those which existed in Barremian and early Aptian times in this basin, when limited water exchange with adjacent oceans caused oxygen deficiency and the deposition of numerous organic carbon-rich black shales. The thick, organic matter-poor Upper Albian sequence of northern Germany also contrasts with comparatively thin, time-equivalent, deep-sea black shales from Italy. This discrepancy indicates that local and regional oceanographic factors (at least in this case) have a greater influence on organic matter deposition than global events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results of the analyses of twenty-three samples from the Middle Miocene to Lower Pliocene strata from DSDP Site 467, offshore California, are presented. The analyses were performed with the aim of determining the origin of the organic matter, the stratigraphic section's hydrocarbon generation potential and extent of organic diagenesis. Organic carbon contents are an order of magnitude greater than those typically found in deep sea sediments, suggesting an anoxic depositional environment and elevated levels of primary productivity. Hydrocarbon generation potentials are above average for most samples. The results of elemental analyses indicate that the kerogens are primarily composed of type II organic matter and are thermally immature. Analysis of the bitumen fractions confirms that the samples are immature. In cores from 541 to 614 meters, the gas chromatograms of the C15+ non-aromatic hydrocarbon fractions are dominated by a single peak which was identified as 17*(H), 18*(H), 21beta(H)-28, 30-bisnorhopane. This interval is the same area in which the highest degrees of anoxia are observed as reflected by the lowest pristane/phytane ratios. This correlation may have some implications with regard to the origin of the bisnorhopane and its possible use as an indicator of anoxic depositional conditions within thermally immature sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies of the nature and amount of dissolved organic matter (DOM) in pore-water solutions have been confined mostly to recent sediments (Henrichs and Farrington, 1979; Krom and Sholkovitz, 1977; Nissenbaum et al., 1972). The analyses of organic constituents in interstitial waters have not been extended to sediment depths of more than 15 meters (Starikova, 1970). Large fluctuations in organic contents of near-bottom interstitial fluids suggest that organic compounds may provide insight into the chemical and biological processes occurring in the sedimentary column. Gradients in inorganic ion concentrations have been used as indicators of diagenesis of organic matter in deep sediments and interstitial waters. Shishkina (1978) attributed the occurrence of iodine and Cl/Br ratios that deviated from the value of seawater to the breakdown of organic matter and the liberation of bromide during mineralization. Sulfate depletion and maxima in ammonia concentrations were interpreted to be a consequence of sulfate reduction reactions in pore fluids, even at depths of more than 400 meters (Miller et al., 1979; Manheim and Schug, 1978).The purpose of this chapter is to study organic carbon compounds dissolved in interstitial waters of deep sediments at Sites 474 and 479.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benthic foraminiferal assemblage compositions and sedimentary geochemical parameters were analyzed in two radiocarbon dated sediment cores from the upwelling area off NW Africa at 12°N, to reconstruct productivity changes during the last 31 kyr. High-latitude cold events and variations in low-latitude summer insolation influenced humidity, wind systems, and the position of the tropical rain belt over this time period. This in turn caused changes in intensity and seasonality of primary productivity off the southern Northwest African continental margin. High accumulation rates of benthic foraminifera, carbonate, and organic carbon during times of north Atlantic melt water events Heinrich 2 (25.4 to 24.3 kyr BP) and 1 (16.8 to 15.8 kyr BP) indicate high productivity. Dominance of infaunal benthic foraminiferal species and high numbers of deep infaunal specimens during that time indicate a strong and sustained supply of refractory organic matter reworked from the upper slope and shelf. A more southerly position of the tropical rainbelt and the Northeast trade wind belt during Heinrich 2 and 1 may have enhanced wind intensity and almost permanent upwelling, driving this scenario. A phytodetritus-related benthic fauna indicates seasonally pulsed input of labile organic matter but generally low year-round productivity during the Last Glacial Maximum (23 to 18 kyr BP). The tropical rainbelt is more expanded to the North than during Heinrich Events, and relatively weak NE trade winds resulted in seasonal and weak upwelling, thus lower productivity. High productivity characterized by a seasonally high input of labile organic matter, is indicated for times of orbital forced warming, such as the African Humid Period (9.8 to 7 kyr BP). An intensified African monsoon during boreal summer and the northernmost position of the tropical rainbelt within the last 31 kyr resulted in enhanced river discharge from the northward-extended drainage area (or river basin) initiating intense phytoplankton blooms. In the late Holocene (4 to 0 kyr BP) strong carbonate dissolution may have been caused by even more enhanced organic matter fluxes to the sea floor. Increasing aridity on the continent and stronger NE trade winds induced intensive, seasonal coastal upwelling.