980 resultados para optimal route finding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is given for solving an optimal H2 approximation problem for SISO linear time-invariant stable systems. The method, based on constructive algebra, guarantees that the global optimum is found; it does not involve any gradient-based search, and hence avoids the usual problems of local minima. We examine mostly the case when the model order is reduced by one, and when the original system has distinct poles. This case exhibits special structure which allows us to provide a complete solution. The problem is converted into linear algebra by exhibiting a finite-dimensional basis for a certain space, and can then be solved by eigenvalue calculations, following the methods developed by Stetter and Moeller. The use of Buchberger's algorithm is avoided by writing the first-order optimality conditions in a special form, from which a Groebner basis is immediately available. Compared with our previous work the method presented here has much smaller time and memory requirements, and can therefore be applied to systems of significantly higher McMillan degree. In addition, some hypotheses which were required in the previous work have been removed. Some examples are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sri Lanka is a comparatively small island (65.584 km²) within the equatorial belt of calms. There are only slight seasonal variations in temperature, air humidity and day length. A description is given of the amphibian and reptile material brought back from the Austrian Indo-Pacific expedition, 1970-71. Some notes on the habitat of the animals are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models. © 2010 Nagengast et al.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most academic control schemes for MIMO systems assume all the control variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The multiplexed MPC scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, and hence improved performance, despite finding sub-optimal solutions to the original problem. The multiplexed MPC scheme is also closer to industrial practice in many cases. This paper presents initial stability results for two variants of multiplexed MPC, and illustrates the performance benefit by an example. Copyright copy; 2005 IFAC. Copyright © 2005 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimal control of problems that are constrained by partial differential equations with uncertainties and with uncertain controls is addressed. The Lagrangian that defines the problem is postulated in terms of stochastic functions, with the control function possibly decomposed into an unknown deterministic component and a known zero-mean stochastic component. The extra freedom provided by the stochastic dimension in defining cost functionals is explored, demonstrating the scope for controlling statistical aspects of the system response. One-shot stochastic finite element methods are used to find approximate solutions to control problems. It is shown that applying the stochastic collocation finite element method to the formulated problem leads to a coupling between stochastic collocation points when a deterministic optimal control is considered or when moments are included in the cost functional, thereby forgoing the primary advantage of the collocation method over the stochastic Galerkin method for the considered problem. The application of the presented methods is demonstrated through a number of numerical examples. The presented framework is sufficiently general to also consider a class of inverse problems, and numerical examples of this type are also presented. © 2011 Elsevier B.V.