983 resultados para oil palm waste


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dahlstedtia pentaphylla (Taub.) Burkart and D. pinnata (Benth.) Malme belong to the Millettieae tribe and are tropical leguminous trees that produce a strong and unpleasant odour. In the present work, we investigated the distribution, development and histochemistry of foliar and floral secretory cavities that could potentially be related to this odour. The ultrastructure of foliar secretory cavities were also studied and compared with histochemical data. These data were compared with observations recorded for other species of Millettieae in order to gain a phylogenetic and taxonomic perspective. Foliar secretory cavities were only recorded for D. pentaphylla. Floral secretory cavities were present in the calyx, wings and keels in both species; in D. pinnata they also were found in bracteoles and vexillum. Such structures were found to originate through a schizogenous process. Epithelial cells revealed a large amount of flattened smooth endoplasmic reticula, well-developed dictyosomes and vacuoles containing myelin-like structures. Cavity lumen secretion stains strongly for lipids. Features of the secretory cavities studied through ultrastructural and histochemical procedures identify these structures as oil glands. Thus, if the odour produced by such plants has any connection with the accumulation of rotenone, as other species belonging to the "timbó" complex, the lipophilic contents of the secretory cavities of Dahlstedtia species take no part in such odour production. The presence, distribution patterns and frequencies of secretory structures in Dahlstedtia are taxonomically significant and may be utilized as a diagnostic character which justifies the separation of this genus into two species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diplomityön tavoitteena on selvittää TRS-hajapäästöjen muodostumista sekä päästöjen määrää UPM Kymmene Oyj:n Kaukaan sellu- ja paperitehtaalla. Työssä laaditaan TRS-hajapäästöjen mittausohjelma, minkä päivitetty massa- ja paperiteollisuuden BAT-vertailuasiakirja vaatii. Mittausohjelma täydentää tehdasintegraatin ilmapäästöjen valvontaohjelmaa. Hajapäästöjen lisäksi tavoitteena on selvittää häiriötilanteiden aiheuttamia TRS-päästömääriä. Kirjallisuusosassa selvitetään hajujen muodostumista sellun ja paperin valmistuksessa ja niiden käsittelyä ympäristövaikutusten minimoimiseksi. Lisäksi esitellään mittausmenetelmiä. Kokeellisessa osassa valituista kohteista mitataan TRS-pitoisuudet ja hajukaasujen virtaama, joiden perusteella lasketaan TRS-kuormitus. Kuormitus suhteutetaan sellutonnille. Osa kohteista on hajapäästökohteita ja osa kohteita, joista hajukaasut häiriötilanteissa johdetaan käsittelemättä ulos. Tulosten perusteella TRS-hajapäästöjä muodostuu sellun valmistuksessa noin 0,04 kgS/ADt ja jätevedenkäsittelyssä, pääasiassa lietteenkäsittelyssä 0,04 kgS/ADt. Hajapäästöjä syntyy eniten kohteissa, missä keräily on toteutettu kevyemmin tai sitä ei ole. Merkittävimmät kohteet Kaukaalla ovat lietteenkäsittely, koivukuitulinja ja mäntyöljylaitos. Havulinjan ja talteenotto-osaston hajapäästöt ovat muita osastoja vähäisemmät. Yhteensä sellutehtaan ja lietteenkäsittelyn TRS-hajapäästömäärä on 0,08 kgS/ADt, mikä on BAT vaihteluvälin (0,05-0,2 kgS/ADt) sisällä. TRS-häiriöpäästöjen osuus tehtaan TRS päästöistä voi häiriötilanteiden toistuessa nousta merkittäviksi. Tähän vaikuttaa merkittävästi häiriintyvä kohde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purification of hydrocarbon waste streams is needed to recycle valuable hydrocarbon products, reduce hazardous impacts on environment, and save energy. To obtain these goals, research must be focused on the search of effective and feasible purification and re-refining technologies. Hydrocarbon waste streams can contain both deliberately added additives to original product and during operation cycle accumulated undesired contaminants. Compounds may have degenerated or cross-reacted. Thus, the presence of unknown species cause additional challenges for the purification process. Adsorption process is most suitable to reduce impurities to very low concentrations. Main advantages are availability of selective commercial adsorbents and the regeneration option to recycle used separation material. Used hydrocarbon fraction was purified with various separation materials in the experimental part. First screening of suitable materials was done. In the second stage, temperature dependence and adsorption kinetics were studied. Finally, one fixed bed experiment was done with the most suitable material. Additionally, FTIR-measurements of hydrocarbon samples were carried out to develop a model to monitor the concentrations of three target impurities based on spectral data. Adsorption capacities of the tested separation materials were observed to be low to achieve high enough removal efficiencies for target impurities. Based on the obtained data, batch process would be more suitable than a fixed bed process and operation at high temperatures is favorable. Additional pretreatment step is recommended to improve removal efficiency. The FTIR-measurement was proven to be a reliable and fast analysis method for challenging hydrocarbon samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work characterized and compared the anatomical structures of the leaves of Bactris gasipaes (Arecaceae) plants grown under different cultivation conditions (in vitro, ex vitro and in vivo) with the goal of identifying the origins of the difficulties encountered in acclimatizing micro-plants. The Quant program was used to determine leaf tissue thicknesses and areas, and histochemical tests were performed on leaf sections and analyzed using light microscopy. Stomatal and trichome densities were determined using the epidermal impression method and by scanning electronic microscopy. Our results indicated that there were no discernible alterations of the anatomical characteristics of the leaves of micro-plants cultivated under differing conditions and that the thickening of the mesophyll and the vascular fibers indicated adaptive responses to ex vitro conditions. As such, the observed difficulties in acclimatizing peach palm micro-plants to ex vitro conditions cannot be attributed to plant anatomical characteristics acquired during in vitro cultivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AQUAREL project studied the availability and optional utilization methods for fish processing side streams and other aquatic biomaterial in the Republic of Karelia. Additionally processing aquatic biomaterial with manure and sewage sludge was studied. Based on the results, the most feasible option today is to process fish side streams to fish oil and dewatered oil-free residue and to use them for fish or animal feed production. However, it is necessary to highlight, that changes in e.g. economic environment, energy prices and demand may require re-evaluating the results and conclusions made in the project. Producing fish oil from fish processing side streams is an easy and relatively simple production process generating a valuable end product. The functionality of the process was confirmed in a pilot conducted in the project. The oil and solids are separated from the heated fish waste based on gravity. The fish oil separating on top of the separator unit is removed. Fish oil can as such be utilized for heating purposes, fish meal or animal feed production, but it can also be further processed to biodiesel. However, due to currently moderate energy prices in Russia, biodiesel production is not economically profitable. Even if the fish oil production process is not complicated, the operative management of small-scale fish oil production unit requires dedicated resources and separate facilities especially to meet hygiene requirements. Managing the side streams is not a core business for fish farmers. Efficient and economically profitable fish oil production requires a centralized production unit with bigger processing capacity. One fish processing unit needs to be designed to manage side streams collected from several fish farms. The optimum location for the processing unit is in the middle of the fish farms. Based on the transportation cost analysis in the Republic of Karelia, it is not economically efficient to transport bio-wastes for more than 100 km since the transportation costs start increasing substantially. Another issue to be considered is that collection of side streams, including the dead fish, from the fish farms should be organized on a daily basis in order to eliminate the need for storing the side streams at the farms. Based on AQUAREL project studies there are different public funding sources available for supporting and enabling profitable and environmentally sustainable utilization, research or development of fish processing side streams and other aquatic biomaterial. Different funding programmes can be utilized by companies, research organizations, authorities and non-governmental organizations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Croton zehntneri is an aromatic plant native to Northeastern Brazil, where it is often used in folk medicine. In the present study the antinociceptive effects of the essential oil of Croton zehntneri (EOCz) were evaluated in mice. EOCz administered orally at doses of 100 and 300 mg/kg reduced paw licking time in the second phase of the formalin test from the control value of 41.61 ± 8.62 to 12.01 ± 7.97 and 6.57 ± 3.42 s, respectively. During the first phase of the formalin test only 300 mg/kg induced a significant alteration (from 58.2 ± 7.02, control, to 28.7 ± 4.73 s). The number of contortions in response to intraperitoneal injections of acetic acid did not differ significantly between controls (80.6 ± 9.01) and experimental (300 mg/kg body weight) animals (89.1 ± 9.53% of the control numbers; P > or = 0.05, Student t-test). In the hot-plate test, EOCz at doses > or = 100 mg/kg significantly increased the latency time with respect to controls (11.2 ± 0.80). At 100 and 300 mg/kg this increase persisted for 180 and 240 min, respectively. The data show that EOCz is effective as an antinociceptive agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Croton nepetaefolius Baill., is an aromatic plant native to the northeast of Brazil where it is extensively used in folk medicine as a sedative, orexigen and antispasmodic agent. In the present study the antinociceptive effects of the essential oil of C. nepetaefolius (EOCn), administered orally, were evaluated in male Swiss mice (20-25 g). In the acetic acid-induced writhing test, EOCn (100 and 300 mg/kg; N = 14 and N = 12, respectively) was effective at the highest dose. In the hot-plate test, EOCn at 30 and 300 mg/kg, but not at 3 mg/kg, significantly increased the latency at all observation times up to the 180th min (N = 12 for each dose). In the formalin test, EOCn significantly reduced paw licking in the second phase of the test at 100 mg/kg (N = 12), but decreased it in both phases at 300 mg/kg (N = 12). At 30 mg/kg, the effect of EOCn did not differ from control values in either phase of the formalin test (N = 6). Pretreatment with naloxone (5 mg/kg, ip) significantly reversed the analgesic effect of morphine (5 mg/kg, sc) on both phases, but not that of EOCn at 300 mg/kg (N = 6) on both phases of the formalin test. The data show that orally administered EOCn promotes a dose-dependent antinociceptive effect whose mechanisms remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the antinociceptive effects of the essential oil of Ocimum gratissimum L. (Labiatae) (EOOG) in two classical models of pain in male Swiss mice (25-35 g), the writhing test and the formalin test. At doses of 30, 100 and 300 mg/kg (po), EOOG produced a dose-dependent inhibition (from 58.3 ± 4.4 to 40.7 ± 6.3, 36.4 ± 3.6 and 24.6 ± 3.6, respectively; N = 8-10, P<0.05) of acetic acid-induced writhing, causing up to a ~60% inhibition at the highest dose used, comparable to that obtained with indomethacin (10 mg/kg, po). At the same doses, EOOG predominantly inhibited the late (inflammatory) phase of the formalin-induced pain response (from 59.3 ± 8.3 to 40.4 ± 4.8, 23.2 ± 2.8 and 25.3 ± 5.5, respectively; N = 6, P<0.05), with a maximal reduction of ~60% of the control, although a significant reduction of the initial (neurogenic) phase was also observed at 300 mg/kg (from 62.5 ± 6.07 to 37 ± 5.9; P<0.05). On the basis of these data, we conclude that EOOG possesses interesting antinociceptive properties in the writhing and formalin tests. Due to the relatively low toxicity of EOOG, further detailed examination is strongly indicated for a better characterization of its pharmacological properties and its potential therapeutic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the re-refining of the used lube oils has gained worldwide a lot of attention due to the necessity for added environmental protection and increasingly stringent environmental legislation. One of the parameters determining the quality of the produced base oils is the composition of feedstock. Estimation of the chemical composition of the used oil collected from several European locations showed that the hydrocarbon structure of the motor oil is changed insignificantly during its operation and the major part of the changes is accounted for with depleted oil additives. In the lube oil re-refining industry silicon, coming mainly from antifoaming agents, is recognized to be a contaminant generating undesired solid deposits in various locations in the re-refining units. In this thesis, a particular attention was paid to the mechanism of solid product formation during the alkali treatment process of silicon-containing used lube oils. The transformations of a model siloxane, tetramethyldisiloxane (TMDS), were studied in a batch reactor at industrially relevant alkali treatment conditions (low temperature, short reaction time) using different alkali agents. The reaction mechanism involving solid alkali metal silanolates was proposed. The experimental data obtained demonstrated that the solids were dominant products at low temperature and short reaction time. The liquid products in the low temperature reactions were represented mainly by linear siloxanes. The prolongation of reaction time resulted in reduction of solids, whereas both temperature and time increase led to dominance of cyclic products in the reaction mixture. Experiments with the varied reaction time demonstrated that the concentration of cyclic trimer being the dominant in the beginning of the reaction diminished with time, whereas the cyclic tetramer tended to increase. Experiments with lower sodium hydroxide concentration showed the same effect. In addition, a decrease of alkali agent concentration in the initial reaction mixture accelerated TMDS transformation reactions resulting in solely liquid cyclic siloxanes yields. Comparison of sodium and potassium hydroxides applied as an alkali agent demonstrated that potassium hydroxide was more efficient, since the activation energy in KOH presence was almost 2-fold lower than that for sodium hydroxide containing reaction mixture. Application of potassium hydroxide for TMDS transformation at 100° C with 3 hours reaction time resulted in 20 % decrease of solid yields compared to NaOH-containing mixture. Moreover, TMDS transformations in the presence of sodium silanolate applied as an alkali agent led to formation of only liquid products without formation of the undesired solids. On the basis of experimental data and the proposed reaction mechanism, a kinetic model was developed, which provided a satisfactory description of the experimental results. Suitability of the selected siloxane as a relevant model of industrial silicon-containing compounds was verified by investigation of the commercially available antifoam agent in base-catalyzed conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research has highlighted the adequacy of Markov regime-switching model to address dynamic behavior in long term stock market movements. Employing a purposed Extended regime-switching GARCH(1,1) model, this thesis further investigates the regime dependent nonlinear relationship between changes in oil price and stock market volatility in Saudi Arabia, Norway and Singapore for the period of 2001-2014. Market selection is prioritized to national dependency on oil export or import, which also rationalizes the fitness of implied bivariate volatility model. Among two regimes identified by the mean model, high stock market return-low volatility regime reflects the stable economic growth periods. The other regime characterized by low stock market return-high volatility coincides with episodes of recession and downturn. Moreover, results of volatility model provide the evidence that shocks in stock markets are less persistent during the high volatility regime. While accelerated oil price rises the stock market volatility during recessions, it reduces the stock market risk during normal growth periods in Singapore. In contrast, oil price showed no significant notable impact on stock market volatility of target oil-exporting countries in either of the volatility regime. In light to these results, international investors and policy makers could benefit the risk management in relation to oil price fluctuation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we determined the effect of chronic diet supplementation with n-3 PUFA on renal function of healthy and cachectic subjects by providing fish oil (1 g/kg body weight) to female rats throughout pregnancy and lactation and then to their offspring post-weaning and examined its effect on renal function parameters during their adulthood. The animals were divided into four groups of 5-10 rats in each group: control, control supplemented with fish oil (P), cachectic Walker 256 tumor-bearing (W), and W supplemented with fish oil (WP). Food intake was significantly lower in the W group compared to control (12.66 ± 4.24 vs 25.30 ± 1.07 g/day). Treatment with fish oil significantly reversed this reduction (22.70 ± 2.94 g/day). Tumor growth rate was markedly reduced in the P group (16.41 ± 2.09 for WP vs 24.06 ± 2.64 g for W). WP group showed a significant increase in mean glomerular filtration rate compared to P and control (1.520 ± 0.214 ml min-1 kg body weight-1; P < 0.05). Tumor-bearing groups had low urine osmolality compared to control rats. The fractional sodium excretion decreased in the W group compared to control (0.43 ± 0.16 vs 2.99 ± 0.87%; P < 0.05), and partially recovered in the WP group (0.90 ± 0.20%). In summary, the chronic supplementation with fish oil used in this study increased the amount of fat in the diet by only 0.1%, but caused remarkable changes in tumor growth rate and cachexia, also showing a renoprotective function.