986 resultados para not odontogenic cyst
Resumo:
Intake of heterocyclic amines (HCAs, carcinogens produced during cooking of meat/fish, the most abundant being PhIP, DiMeIQx and MeIQx) is influenced by many factors including type/thickness of meat and cooking method/temperature/duration. Thus, assessment of HCA dietary exposure is difficult. Protein adducts of HCAs have been proposed as potential medium-term biomarkers of exposure, e.g. PhIP adducted to serum albumin or haemoglobin. However, evidence is still lacking that HCA adducts are viable biomarkers in humans consuming normal diets. The FoodCAP project, supported by World Cancer Research Fund, developed a highly sensitive mass spectrometric method for hydrolysis, extraction and detection of acid-labile HCAs in blood and assessed their validity as biomarkers of exposure. Multiple acid/alkaline hydrolysis conditions were assessed, followed by liquid-liquid extraction, clean-up by cation-exchange SPE and quantification by UPLC-ESI-MS/ MS. Blood was analysed from volunteers who completed food diaries to estimate HCA intake based on the US National Cancer Institute’s CHARRED database. Standard HCAs were recovered quantitatively from fortified blood. In addition, PhIP/MeIQx adducts bound to albumin and haemoglobin prepared in vitro using a human liver microsome system were also detectable in blood fortified at low ppt concentrations. However, except for one sample (5pg/ml PhIP), acid-labile PhIP, 7,8-DiMeIQx, 4,8-DiMeIQx and MeIQx were not observed above the 2pg/ml limit of detection in plasma (n=35), or in serum, whole blood or purified albumin, even in volunteers with high meat consumption (nominal HCA intake >2µg/day). It is concluded that HCA blood protein adducts are not viable biomarkers of exposure. Untargeted metabolomic analyses may facilitate discovery of suitable markers.
Resumo:
The contracting-out of public services has often been accompanied by a strong academic focus on the emergence of new governance forms, and a general neglect of the processes and practices through which contracted-out services are controlled and monitored. To fill this gap, we draw on contracting-out and inter-organizational control literatures to explore the adoption of control mechanisms for public service provision at the municipal level and the variables that can explain their choice. Our results, based on a survey of Italian municipalities, show that in the presence of contracting-out, market-, hierarchy- and trust-based controls display different intensities, can co-exist and are explained by different variables. Service characteristics are more effective in explaining market- and hierarchy-based controls than relationship characteristics. Trust-based controls are the most widespread, but cannot be explained by the variables traditionally identified in contracting-out and inter-organizational control studies.
Resumo:
We derive the species-area relationship (SAR) expected from an assemblage of fractally distributed species. If species have truly fractal spatial distributions with different fractal dimensions, we show that the expected SAR is not the classical power-law function, as suggested recently in the literature. This analytically derived SAR has a distinctive shape that is not commonly observed in nature: upward-accelerating richness with increasing area (when plotted on log-log axes). This suggests that, in reality, most species depart from true fractal spatial structure. We demonstrate the fitting of a fractal SAR using two plant assemblages (Alaskan trees and British grasses). We show that in both cases, when modelled as fractal patterns, the modelled SAR departs from the observed SAR in the same way, in accord with the theory developed here. The challenge is to identify how species depart from fractality, either individually or within assemblages, and more importantly to suggest reasons why species distributions are not self-similar and what, if anything, this can tell us about the spatial processes involved in their generation.
Resumo:
Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 μM prevents B. subtilis biofilm formation, (3) endogenous norspermidine is present in biofilms at 50-80 μM, and (4) norspermidine prevents biofilm formation by condensing biofilm exopolysaccharide. In contrast, we find that, at concentrations up to 200 μM, exogenous norspermidine promotes biofilm formation. We find that norspermidine is absent in wild-type B. subtilis biofilms at all stages, and higher concentrations of exogenous norspermidine eventually inhibit planktonic growth and biofilm formation in an exopolysaccharide-independent manner. Moreover, orthologs of the V. cholerae norspermidine biosynthetic pathway are absent from B. subtilis, confirming that norspermidine is not physiologically relevant to biofilm function in this species.
Resumo:
Bdellovibrio bacteriovorus are small, vibroid, predatory bacteria that grow within the periplasmic space of a host Gram-negative bacterium. The intermediate-filament (IF)-like protein crescentin is a member of a broad class of IF-like, coiled-coil-repeat-proteins (CCRPs), discovered in Caulobacter crescentus, where it contributes to the vibroid cell shape. The B. bacteriovorus genome has a single ccrp gene encoding a protein with an unusually long, stutter-free, coiled-coil prediction; the inactivation of this did not alter the vibriod cell shape, but caused cell deformations, visualized as chiselled insets or dents, near the cell poles and a general 'creased' appearance, under the negative staining preparation used for electron microscopy, but not in unstained, frozen, hydrated cells. Bdellovibrio bacteriovorus expressing 'teal' fluorescent protein (mTFP), as a C-terminal tag on the wild-type Ccrp protein, did not deform under negative staining, suggesting that the function was not impaired. Localization of fluorescent Ccrp-mTFP showed some bias to the cell poles, independent of the cytoskeleton, as demonstrated by the addition of the MreB-specific inhibitor A22. We suggest that the Ccrp protein in B. bacteriovorus contributes as an underlying scaffold, similar to that described for the CCRP protein FilP in Streptomyces coelicolor, preventing cellular indentation, but not contributing to the vibroid shape of the B. bacteriovorus cells.
Resumo:
BACKGROUND: LuxS may function as a metabolic enzyme or as the synthase of a quorum sensing signalling molecule, auto-inducer-2 (AI-2); hence, the mechanism underlying phenotypic changes upon luxS inactivation is not always clear. In Helicobacter pylori, we have recently shown that, rather than functioning in recycling methionine as in most bacteria, LuxS (along with newly-characterised MccA and MccB), synthesises cysteine via reverse transsulphuration. In this study, we investigated whether and how LuxS controls motility of H. pylori, specifically if it has its effects via luxS-required cysteine metabolism or via AI-2 synthesis only.
RESULTS: We report that disruption of luxS renders H. pylori non-motile in soft agar and by microscopy, whereas disruption of mccAHp or mccBHp (other genes in the cysteine provision pathway) does not, implying that the lost phenotype is not due to disrupted cysteine provision. The motility defect of the DeltaluxSHp mutant was complemented genetically by luxSHp and also by addition of in vitro synthesised AI-2 or 4, 5-dihydroxy-2, 3-pentanedione (DPD, the precursor of AI-2). In contrast, exogenously added cysteine could not restore motility to the DeltaluxSHp mutant, confirming that AI-2 synthesis, but not the metabolic effect of LuxS was important. Microscopy showed reduced number and length of flagella in the DeltaluxSHp mutant. Immunoblotting identified decreased levels of FlaA and FlgE but not FlaB in the DeltaluxSHp mutant, and RT-PCR showed that the expression of flaA, flgE, motA, motB, flhA and fliI but not flaB was reduced. Addition of DPD but not cysteine to the DeltaluxSHp mutant restored flagellar gene transcription, and the number and length of flagella.
CONCLUSIONS: Our data show that as well as being a metabolic enzyme, H. pylori LuxS has an alternative role in regulation of motility by modulating flagellar transcripts and flagellar biosynthesis through production of the signalling molecule AI-2.
Resumo:
Background
Whilst there have been a number of insights into the subsets of CD4+ T cells induced by pathogenicBacillus anthracis infections in animal models, how these findings relate to responses generated in naturally infected and vaccinated humans has yet to be fully established. We describe the cytokine profile produced in response to T cell stimulation with a previously defined immunodominant antigen of anthrax, lethal factor (LF), domain IV, in cohorts of individuals with a history of cutaneous anthrax, compared with vaccinees receiving the U.K. licenced Anthrax Vaccine Precipitated (AVP) vaccine.
FindingsWe found that immunity following natural cutaneous infection was significantly different from that seen after vaccination. AVP vaccination was found to result in a polarized IFNγ CD4+ T cell response, while the individuals exposed to B. anthracis by natural infection mounted a broader cytokine response encompassing IFNγ, IL-5, −9, −10, −13, −17, and −22.
ConclusionsVaccines seeking to incorporate the robust, long-lasting, CD4 T cell immune responses observed in naturally acquired cutaneous anthrax cases may need to elicit a similarly broad spectrum cellular immune response.
Resumo:
Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipo- polysaccharide (LPS) with 4-amino-4-deoxy-L-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabi- dopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection.