978 resultados para neural Correlates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background We have previously shown that the selective serotonergic re-uptake inhibitor, citalopram, reduces the neural response to reward and aversion in healthy volunteers. We suggest that this inhibitory effect might underlie the emotional blunting reported by patients on these medications. Bupropion is a dopaminergic and noradrenergic re-uptake inhibitor and has been suggested to have more therapeutic effects on reward-related deficits. However, how bupropion affects the neural responses to reward and aversion is unclear. Methods 17 healthy volunteers (9 female, 8 male) received 7 days of bupropion (150 mg/day) and 7 days of placebo treatment, in a double-blind crossover design. Our functional Magnetic Resonance Imaging task consisted of 3 phases; an anticipatory phase (pleasant or unpleasant cue), an effort phase (button presses to achieve a pleasant taste or to avoid an unpleasant taste) and a consummatory phase (pleasant or unpleasant tastes). Volunteers also rated wanting, pleasantness and intensity of the tastes. Results Relative to placebo, bupropion increased activity during the anticipation phase in the ventral medial prefrontal cortex (vmPFC) and caudate. During the effort phase, bupropion increased activity in the vmPFC, striatum, dorsal anterior cingulate cortex and primary motor cortex. Bupropion also increased medial orbitofrontal cortex, amygdala and ventral striatum activity during the consummatory phase. Conclusions Our results are the first to show that bupropion can increase neural responses during the anticipation, effort and consummation of rewarding and aversive stimuli. This supports the notion that bupropion might be beneficial for depressed patients with reward-related deficits and blunted affect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown previously that particpants “at risk” of depression have decreased neural processing of reward suggesting this might be a neural biomarker for depression. However, how the neural signal related to subjective experiences of reward (wanting, liking, intensity) might differ as trait markers for depression, is as yet unknown. Using SPM8 parametric modulation analysis the neural signal related to the subjective report of wanting, liking and intensity was compared between 25 young people with a biological parent with depression (FH) and 25 age/gender matched controls. In a second study the neural signal related to the subjective report of wanting, liking and intensity was compared between 13 unmedicated recovered depressed (RD) patients and 14 healthy age/gender matched controls. The analysis revealed differences in the neural signal for wanting, liking and intensity ratings in the ventral striatum, dmPFC and caudate respectively in the RD group compared to controls . Despite no differences in the FH groups neural signal for wanting and liking there was a difference in the neural signal for intensity ratings in the dACC and anterior insula compared to controls. These results suggest that the neural substrates tracking the intensity but not the wanting or liking for rewards and punishers might be a trait marker for depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) has been reported to be involved with both bone healing and bone metabolism. The aim of this study was to test the null hypothesis that there is no correlation between new bone formation during mandibular distraction osteogenesis and NOS expression in the trigeminal ganglion of rats. Newly formed tissue during distraction osteogenesis and trigeminal NOS expression measured by the NADPH-diaphorase (NADPH-d) reaction were evaluated in 72 male Wistar rats by histomorphometric and histochemical methods. In animals submitted to 0.5 mm/day distraction osteogenesis, the percentage of bone tissue was higher in the basal area of the mandibles compared with the center and significantly increased through the experimental periods (P < 0.05). At the sixth postoperative week, the difference in bone formation between the continuous and acute distraction osteogenesis groups was the highest. Significant correlation between new bone formation by distraction osteogenesis and NADPH-d-reactive neurons was found, varying according to neuronal cell size (r = -0.6, P = 0.005, small cells strongly stained; r = 0.5, P = 0.018, large cells moderately stained). The results suggest that NOS may play a role in the bone healing process via neurogenic pathways, and the phenomenon seems to be neuronal cell morphotype-dependent. Further studies are now warranted to investigate the mechanistic link between the expression of trigeminal NOS and mandibular new bone formation by distraction osteogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the evolution of anuran locomotor performance and its morphological correlates as a function of habitat use and lifestyles. We reanalysed a subset of the data reported by Zug (Smithson. Contrib. Zool. 1978; 276: 1-31) employing phylogenetically explicit statistical methods (n = 56 species), and assembled morphological data on the ratio between hind-limb length and snout-vent length (SVL) from the literature and museum specimens for a large subgroup of the species from the original paper (n = 43 species). Analyses using independent contrasts revealed that classifying anurans into terrestrial, semi-aquatic, and arboreal categories cannot distinguish between the effects of phylogeny and ecological diversification in anuran locomotor performance. However, a more refined classification subdividing terrestrial species into `fossorials` and `non-fossorials`, and arboreal species into `open canopy`, `low canopy` and `high canopy`, suggests that part of the variation in locomotor performance and in hind-limb morphology can be attributed to ecological diversification. In particular, fossorial species had significantly lower jumping performances and shorter hind limbs than other species after controlling for SVL, illustrating how the trade-off between burrowing efficiency and jumping performance has resulted in morphological specialization in this group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adult mammalian brain contains self-renewable, multipotent neural stem cells (NSCs) that are responsible for neurogenesis and plasticity in specific regions of the adult brain. Extracellular matrix, vasculature, glial cells, and other neurons are components of the niche where NSCs are located. This surrounding environment is the source of extrinsic signals that instruct NSCs to either self-renew or differentiate. Additionally, factors such as the intracellular epigenetics state and retrotransposition events can influence the decision of NSC`s fate into neurons or glia. Extrinsic and intrinsic factors form an intricate signaling network, which is not completely understood. These factors altogether reflect a few of the key players characterized so far in the new field of NSC research and are covered in this review. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 107-114 DOI:10.1002/wsbm:100

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unfolded protein response (UPR)-mediated pancreatic beta-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against beta-cell death induced by proinflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) andC/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2 alpha kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic beta-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT. Journal of Endocrinology (2010) 206, 183-193

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free fatty acids are known for playing a crucial role in the development of insulin resistance. High fat intake is known for impairing insulin sensitivity; however, the effect of vegetable-oil injections have never been investigated. The present study investigated the effects of daily subcutaneous injections (100 mu L) of soybean (SB) and sunflower (SF) oils, during 7 days. Both treated groups developed insulin resistance as assessed by insulin tolerance test. The mechanism underlying the SB- and SF-induced insulin resistance was shown to involve GLUT4. In SB- and SF-treated animals, the GLUT4 protein expression was reduced similar to 20% and 10 min after an acute it? vivo stimulus with insulin, the plasma membrane GLUT4 content was similar to 60% lower in white adipose tissue (WAT). No effects were observed in skeletal muscle. Additionally, both oil treatments increased mainly the content of palmitic acid (similar to 150%) in WAT, which can contribute to explain the GLUT4 regulations. Altogether, the present study collects evidence that those oil treatments might generate insulin resistance by targeting GLUT4 expression and translocation specifically in WAT. These alterations are likely to be caused due to the specific local increase in saturated fatty acids that occurred as a consequence of oil daily injections. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA binding proteins regulate gene expression at the posttranscriptional level and play important roles in embryonic development. Here, we report the cloning and expression of Samba, a Xenopus hnRNP that is maternally expressed and persists at least until tail bud stages. During gastrula stages, Samba is enriched in the dorsal regions. Subsequently, its expression is elevated only in neural and neural crest tissues. In the latter, Samba expression overlaps with that of Slug in migratory neural crest cells. Thereafter, Samba is maintained in the neural crest derivatives, as well as other neural tissues, including the anterior and posterior neural tube and the eyes. Overexpression of Samba in the animal pole leads to defects in neural crest migration and cranial cartilage development. Thus, Samba encodes a Xenopus hnRNP that is expressed early in neural and neural crest derivatives and may regulate crest cells migratory behavior. Developmental Dynamics 238:204-209, 2009. (C) 2008 Wiley-Liss, Inc.