969 resultados para mud


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composition and distribution of megabenthic communities around Svalbard were investigated in June/July 1991 with 20 Agassiz trawl and 5 bottom trawl hauls in depths between 100 and 2100 m. About 370 species, ranging from sponges to fish, were identified in the catches. Species numbers per station ranged from 21 to 86. Brittle stars, such as Ophiacantha bidentata, Ophiura sarsi and Ophiocten sericeum, were most important in terms of constancy and relative abundance in the catches. Other prominent faunal elements were eunephthyid alcyonarians, bivalves, shrimps, sea stars and fish (Gadidae, Zoarcidae, Cottidae). Multivariate analyses of the species and environmental data sets showed that the spatial distribution of the megabenthos was characterized by a pronounced depth zonation: abyssal, bathyal, off-shore shelf and fjordic communities were discriminated. However, a gradient in sediment properties, especially the organic carbon content, seemed to superimpose on the bathymetric pattern. Both main factors are interpreted as proxies of the average food availability, which is, hence, suggested to have the strongest influence in structuring megabenthic communities off Svalbard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments of Lake Donggi Cona on the northeastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment, related to climatic and non-climatic changes during the last 19 kyr. The lake today fills a 30 X 8 km big and 95 m deep tectonic basin, associated with the Kunlun Fault. The study was conducted on a sediment-core transect through the lake basin, in order to gain a complete picture of spatiotemporal environmental change. The recovered sediments are partly finely laminated and are composed of calcareous muds with variable amounts of carbonate micrite, organic matter, detrital silt and clay. On the basis of sedimentological, geochemical, and mineralogical data up to five lithological units (LU) can be distinguished that document distinct stages in the development of the lake system. The onset of the lowermost LU with lacustrine muds above basal sands indicates that lake level was at least 39 m below the present level and started to rise after 19 ka, possibly in response to regional deglaciation. At this time, the lacustrine environment was characterized by detrital sediment influx and the deposition of siliciclastic sediment. In two sediment cores, upward grain-size coarsening documents a lake-level fall after 13 cal ka BP, possibly associated with the late-glacial Younger Dryas stadial. From 11.5 to 4.3 cal ka BP, grainsize fining in sediment cores from the profundal coring sites and the onset of lacustrine deposition at a litoral core site (2m water depth) in a recent marginal bay of Donggi Cona document lake-level rise during the early tomid-Holocene to at least modern level. In addition, high biological productivity and pronounced precipitation of carbonate micrites are consistent with warm and moist climate conditions related to an enhanced influence of summer monsoon. At 4.3 cal ka BP the lake system shifted from an aragonite- to a calcite-dominated system, indicating a change towards a fully open hydrological lake system. The younger clay-rich sediments are moreover non-laminated and lack any diagenetic sulphides, pointing to fully ventilated conditions, and the prevailing absence of lake stratification. This turning point in lake history could imply either a threshold response to insolation-forced climate cooling or a response to a non-climatic trigger, such as an erosional event or a tectonic pulse that induced a strong earthquake, which is difficult to decide from our data base.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continental rise west of the Antarctic Peninsula includes a number of large sediment mounds interpreted as contourite drifts. Cores from six sediment drifts spanning some 650 km of the margin and 48 of latitude have been dated using chemical and isotopic tracers of palaeoproductivity and diatom biostratigraphy. Interglacial sedimentation rates range from 1.1 to 4.3 cm/ka. Glacial sedimentation rates range from 1.8 to 13.5 cm/ka, and decrease from proximal to distal sites on each drift. Late Quaternary sedimentation was cyclic, with brown, biogenic, burrowed mud containing ice-rafted debris (IRD) in interglacials and grey, barren, laminated mud in glacials. Foraminiferal intervals occur in interglacial stages 5 and 7 but not in the Holocene. Processes of terrigenous sediment supply during glacial stages differed; meltwater plumes were more important in stages 2-4, turbidity currents and ice-rafting in stage 6. The terrigenous component shows compositional changes along the margin, more marked in glacials. The major oxides Al2O3 and K2O are higher in the southwest, and CaO and TiO2 higher in the northeast. There is more smectite among the clay minerals in the northeast. Magnetic susceptibility varies along and between drifts. These changes reflect source variations along the margin. Interglacial sediments show less clear trends, and their IRD was derived from a wider area. Downslope processes were dominant in glacials, but alongslope processes may have attained equal importance in interglacials. The area contrasts with the East Antarctic continental slope in the SE Weddell Sea, where ice-rafting is the dominant process and where interglacial sedimentation rates are much higher than glacial. The differences in glacial setting and margin physiography can account for these contrasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two manganese nodules having a high clay content, a low Mn/Fe ratio, and low contents of valuable metals (Ni 0.25%, Cu 0.17%, Co 0.06%) were recovered in a grab sample during a short geological cruise in HMAS Kimbla in the southern Tasman Sea in May 1979. Five stations were occupied. Free-fall grabs recovered sediment or pumice from four stations; nothing was recovered from the fifth. The carbonate compensation depth in the region is about 4500 m. Reddish brown clay, but no manganese nodules, was recovered in the central southern Tasman Sea, from depths of 4900-5100 m. The nodules, together with grey calcareous mud, were obtained from a depth of 4300 m, farther to the northwest, near Gascoyne Seamount (250 n. miles SE of Sydney). The results suggest nodules with high metal values are likely to exist only in the broad and deep depression in the central southern Tasman Sea southeast of Gascoyne Seamount, where sedimentation rates are low and oxidising conditions prevail. Whether nodule fields are present or not will only be resolved by considerably more sampling.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clasts of metamorphosed mafic igneous rock of diverse composition were recovered in two drill sites on a serpentine mud volcano in the outer Mariana forearc during Ocean Drilling Program Leg 125. These clasts are xenolithic fragments that have been entrained in the rising serpentine mud, and make up less that 9% of the total rock recovered at Sites 778 and 779. Most samples are metabasalt or metadiabase, although one clast of possible boninite and one cumulate gabbro were recovered. On the basis of trace element signatures, samples are interpreted to represent both arc-derived and mid-ocean ridge-derived compositions. Rocks with extremely low TiO2 (<0.3 wt%) and Zr (<30 ppm) are similar to boninite series rocks. Samples with low TiO2 (<0.9 wt%) and Zr (<50 ppm) and extreme potassium enrichment (K2O/Na2O >3.9) may represent island arc rocks similar to shoshonites. However, the K2O/Na2O ratios are much higher than those reported for shoshonites from modem or ancient arcs and may be the result of metamorphism. Samples with moderate TiO2 (1.4 to 1.5 wt%) and Zr (72 to 85 ppm) are similar to rocks from mid-ocean ridges. A few samples have TiO2 and Zr intermediate between island arc and mid-ocean ridge basalt-like rocks. Two samples have high iron (Fe2O3* = >12.8 to 18.5 wt%) (Fe2O3* = total iron calculated as Fe2O3) and TiO2 (>2.3 wt%) and resemble FeTi basalt recovered from mid-ocean ridges. Metamorphism in most samples ranges from low-temperature zeolite, typical of ocean floor weathering, to prehnite-pumpellyite facies and perhaps lower greenschist. Blue amphibole and lawsonite minerals are present in several samples. One diabase clast (Sample 9) exhibits Ca enrichment, similar to rodingite metamorphism, typical of mafic blocks in serpentinized masses. The presence of both low-grade (clays and zeolites) and higher grade (lawsonite) metamorphism indicates retrograde processes in these clasts. These clasts are fragments of the forearc crust and possibly of the subducting plate that have been entrained in the rising serpentine and may represent the deepest mafic rocks ever recovered from the Mariana forearc. The variable compositions and degree of metamorphism of these clasts requires at least two tectonic origins. The recovery of clasts with mid-ocean ridge and arc chemical affinities in a single drill hole requires these clasts to have been "mixed" on a small scale either (1) in the forearc crustal sequence, or (2) after inclusion in the rising serpentine mud. The source of the MORB-like samples and an explanation for the presence of both MORB-like and arc-like rocks in close proximity is critical to any model of the evolution of the Mariana forearc. The source of the MORB-like samples likely will be one (or more) of the following: (1) accretion of Pacific plate lithosphere, (2) remnants of original forearc crust (trapped plate), (3) volcanism in the supra-subduction zone (arc or forearc) environment, or (4) derivation from the subducting slab by faulting along the dÈcollement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large serpentinite seamounts are common in the forearc regions between the trench axis and the active volcanic fronts of the Mariana and Izu-Bonin intraoceanic arcs. The seamounts apparently form both as mud volcanoes, composed of unconsolidated serpentine mud flows that have entrained metamorphosed ultramafic and mafic rocks, and as horst blocks, possibly diapirically emplaced, of serpentinized ultramafics partially draped with unconsolidated serpentine slump deposits and mud flows. The clayand silt-sized serpentine recovered from three sites on Conical Seamount on the Mariana forearc region and from two sites on Torishima Forearc Seamount on the Izu-Bonin forearc region is composed predominantly of chrysotile, brucite, chlorite, and clays. A variety of accessory minerals attest to the presence of unusual pore fluids in some of the samples. Aragonite, unstable at the depths at which the serpentine deposits were drilled, is present in many of the surficial cores from Conical Seamount. Sjogrenite minerals, commonly found as weathering products of serpentine resulting from interaction with groundwater, are found in most of the samples. The presence of aragonite and carbonate-hydroxide hydrate minerals argues for interaction of the serpentine deposits with fluids other than seawater. There are numerous examples of sedimentary serpentinite deposits exposed on land that are very similar to the deposits recovered from the serpentine seamounts drilled on ODP Leg 125. We suggest that Conical Seamount may be a type locality for the study of in situ formation of many of these sedimentary serpentinite bodies. Further, we suggest that both the deposits drilled on Conical Seamount and on Torishima Forearc Seamount demonstrate that serpentinization can continue in situ within the seamounts through interaction of the serpentine deposits with both seawater and subduction-related fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focused on the bacterial diversity associated with microbial mats of deep-sea cold seeps at the Norwegian continental margin. Study sites included the Storegga and Nyegga areas as well as the Håkon Mosby mud volcano, where the mats occurred at temperatures permanently close to the freezing point of seawater. Two visually different mat types, i.e. small gray mats and extensive white mats, were studied with the aim to determine the identity of the mat-forming sulfide oxidizers, and to investigate which environmental factors (e.g. sulfate reduction and methane oxidation rates) shown here could explain the observed diversity. Sequence data have been submitted to the EMBL database under accession No. FR847864-FR847887 (giant sulfur bacteria), No. FR827864 (Menez Gwen filament; see Supplementary Material) and No. FR875365-FR877509 (except FR875905; remaining partial sequences).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geochemical behaviour of uranium and thorium in metalliferous sediments and hydrothermal deposits has been widely studied and the main results have been summarised by Boström and Rydell. These isotopes may be used to clarify how the metal-rich solutions are introduced into sediment cover and seawater. Using radiochemistry followed by alpha spectrometry, we have measured uranium concentrations as high as several hundred p.p.m., which must clearly be associated with ocean ridge thermal activity, in sediments interbedded between the basaltic basement and the green hydrothermal mud at DSDP Site 424. These high uranium concentrations indicate the path followed by the hydrothermal fluid which, debouching at the sediment-water interface, formed the green mud.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three lower Barremian to middle/upper Cenomanian samples from DSDP Hole 549 and three lower Cenomanian to lower Maestrichtian samples from DSDP Hole 550B were investigated by organic geochemical and organic petrographic methods. The samples came from wells drilled in the area of the Goban Spur in the northeastern Atlantic; they represent gray to greenish gray carbonaceous mud or siltstones from the deeper parts of the Cretaceous sequences penetrated and light-colored chalks from the shallower ones. The total amount of organic carbon is below 1% in all samples; it is especially low in the Cenomanian to Maestrichtian chalks. Terrigenous organic matter predominates; only the Barremian sample shows a moderate number of marine phytoclasts. As indicated by several parameters, the maturity of the organic matter is low, corresponding to about 0.4% vitrinite reflectance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An intensive mineralogic and geochemical investigation was conducted on sediments recovered during Ocean Drilling Program Leg 166 from the western Great Bahama Bank at Sites 1006, 1008, and 1009. Pleistocene through middle Miocene sediments recovered from Site 1006, the distal location on the Leg 166 transect, are a mixture of bank-derived and pelagic carbonates with lesser and varying amounts of siliciclastic clays. A thick sequence of Pleistocene periplatform carbonates was recovered near the platform edge at Sites 1008 and 1009. Detailed bulk mineralogic, elemental (Ca, Mg, Sr, and Na), and stable isotopic (d18O and d13C) analyses of sediments are presented from a total of 317 samples from all three sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We obtained sediment physical properties and geochemical data from 47 piston and gravity cores located in the Bay of Bengal, to study the complex history of the Late Pleistocene run-off from the Ganges and Brahmaputra rivers and its imprint on the Bengal Fan. Grain-size parameters were predicted from core logs of density and velocity to infer sediment transport energy and to distinguish different environments along the 3000-km-long transport path from the delta platform to the lower fan. On the shelf, 27 cores indicate rapidly prograding delta foresets today that contain primarily mud, whereas outer shelf sediment has 25% higher silt contents, indicative of stronger and more stable transport regime, which prevent deposition and expose a Late Pleistocene relic surface. Deposition is currently directed towards the shelf canyon 'Swatch of No Ground', where turbidites are released to the only channel-levee system that is active on the fan during the Holocene. Active growth of the channel-levee system occurred throughout sea-level rise and highstand with a distinct growth phase at the end of the Younger Dryas. Coarse-grained material bypasses the upper fan and upper parts of the middle fan, where particle flow is enhanced as a result of flow-restriction in well-defined channels. Sandier material is deposited mainly as sheet-flow deposits on turbidite-dominated plains at the lower fan. The currently most active part of the fan with 10-40 cm thick turbidites is documented for the central channel including inner levees (e.g., site 40). Site 47 from the lower fan far to the east of the active channel-levee system indicates the end of turbidite sedimentation at 300 ka for that location. That time corresponds to the sea-level lowering during late isotopic stage 9 when sediment supply to the fan increased and led to channel avulsion farther upstream, probably indicating a close relation of climate variability and fan activity. Pelagic deep-sea sites 22 and 28 contain a 630-kyear record of climate response to orbital forcing with dominant 21- and 41-kyear cycles for carbonate and magnetic susceptibility, respectively, pointing to teleconnections of low-latitude monsoonal forcing on the precession band to high-latitude obliquity forcing. Upper slope sites 115, 124, and 126 contain a record of the response to high-frequency climate change in the Dansgaard-Oeschger bands during the last glacial cycle with shared frequencies between 0.75 and 2.5 kyear. Correlation of highs in Bengal Fan physical properties to lows in the d18O record of the GISP2 ice-core suggests that times of greater sediment transport energy in the Bay of Bengal are associated with cooler air temperatures over Greenland. Teleconnections were probably established through moisture and other greenhouse-gas forcing that could have been initiated by instabilities in the methane hydrate reservoir in the oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand- to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter- to centimeter-thick, radiolarian-rich laminae occur in both fine- and coarse-grained Valanginian-Hauterivian turbidites. AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau. Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.