973 resultados para molecule imprinting
Resumo:
Protection against Fasciola hepatica in goats immunized with a synthetic recombinant antigen from Schistosoma mansoni fatty acid-binding protein 14 (rSm14) was investigated by assessing worm burdens, serum levels of hepatic enzymes, faecal egg count and hepatic damage, which was evaluated using gross and microscopic morphometric observation. The nature of the local immune response was assessed by examining the distribution of CD2+, CD4+, CD8+ and γ´+ T lymphocytes along with IgG+, IL-4+ and IFN-γ+ cells in the liver and hepatic lymph nodes (HLN). The goats used consisted of group 1 (unimmunized and uninfected), group 2 [infected control - immunized with Quillaia A (Quil A)] and group 3 (immunized with rSm14 in Quil A and infected), each containing seven animals. Immunization with rSm14 in Quil A adjuvant induced a reduction in gross hepatic lesions of 56.6% (p < 0.001) and reduced hepatic and HLN infiltration of CD2+, CD4+, CD8+ and γ´+ T lymphocytes as well as IL-4+ and IFN-γ+ cells (p < 0.05). This is the first report of caprine immunization against F. hepatica using a complete rSm14 molecule derived from S. mansoni. Immunization reduced hepatic damage and local inflammatory infiltration into the liver and HLN. However, considering that Quil A is not the preferential/first choice adjuvant for Sm14 immunization, further studies will be undertaken using the monophosphoryl lipid A-based family of adjuvants during clinical trials to facilitate anti-Fasciolavaccine development.
Resumo:
High postprandial levels of TAG may further induce endothelial dysfunction and inflammation in subjects with high fasting levels of TAG, an effect that seems to be related to oxidative stress. The present study investigated whether minor compounds of olive oil with antioxidant activity decrease postprandial levels of soluble isoforms of intercellular adhesion molecule 1 (sICAM-1) and vascular cell adhesion molecule 1 (sVCAM-1), as surrogate markers of vascular inflammation, after a high-fat meal. A randomized crossover and blind trial on fourteen healthy and fourteen hypertriacylglycerolaemic subjects was performed. The study involved a 1-week adaptation lead-in period on a National Cholesterol Education Program Step I diet supplemented with extra-virgin olive oil (EVOO) containing 1125 mg polyphenols/kg and 350 mg tocopherols/kg, or refined olive oil (ROO) with no polyphenols or tocopherols. After a 12 h fast, the participants ate a high-fat meal enriched in EVOO or ROO (50 g/m2 body surface area), which on average provided 3700 kJ energy with a macronutrient profile of 72% fat, 22% carbohydrate and 6% protein. Blood samples drawn hourly over the following 8 h demonstrated a similar postprandial TAG response for both EVOO and ROO meals. However, in both healthy and hypertriacylglycerolaemic subjects the net incremental area under the curve for sICAM-1 and sVCAM-1 were significantly lower after the EVOO meal. In conclusion,the consumption of EVOO with a high content of minor antioxidant compounds may have postprandial anti-inflammatory protective effects.
Resumo:
Regulatory T cells (Tregs) are characterized by a high expression of IL-2 receptor α chain (CD25) and of forkhead box P3 (FOXP3), the latter being essential for their development and function. Another major player in the regulatory function is the cytotoxic T-lymphocyte associated molecule-4 (CTLA-4) that inhibits cytotoxic responses. However, the regulation of CTLA-4 expression remains less well explored. We therefore studied the microRNA signature of circulating CD4(+) Tregs isolated from adult healthy donors and identified a signature composed of 15 differentially expressed microRNAs. Among those, miR-24, miR-145, and miR-210 were down-regulated in Tregs compared with controls and were found to have potential target sites in the 3'-UTR of FOXP3 and CTLA-4; miR-24 and miR-210 negatively regulated FOXP3 expression by directly binding to their two target sites in its 3'-UTR. On the other hand, miR-95, which is highly expressed in adult peripheral blood Tregs, positively regulated FOXP3 expression via an indirect mechanism yet to be identified. Finally, we showed that miR-145 negatively regulated CTLA-4 expression in human CD4(+) adult peripheral blood Tregs by binding to its target site in CTLA-4 transcript 3'-UTR. To our knowledge, this is the first identification of a human adult peripheral blood CD4(+) Treg microRNA signature. Moreover, unveiling one mechanism regulating CTLA-4 expression is novel and may lead to a better understanding of the regulation of this crucial gene.
Resumo:
The propensity of helminths, such as schistosomes, to immunomodulate the host's immune system is an essential aspect of their survival. Previous research has demonstrated how soluble schistosomal egg antigens (SEA) dampen TLR-signaling during innate immune responses. We show here that the suppressive effect by SEA on TLR signaling is simultaneously coupled to the activation of the Nlrp3 (NLR family, pyrin domain containing 3) inflammasome and thus IL-1β production. Therefore, the responsible protein component of SEA contains the second signal that is required to trigger proteolytic pro-IL-1β processing. Moreover, the SEA component binds to the Dectin-2/FcRγ (Fc receptor γ chain) complex and activates the Syk kinase signaling pathway to induce reactive oxygen species and potassium efflux. As IL-1β has been shown to be an essential orchestrator against several pathogens we studied the in vivo consequences of Schistosoma mansoni infection in mice deficient in the central inflammasome adapter ASC and Nlrp3 molecule. These mice failed to induce local IL-1β levels in the liver and showed decreased immunopathology. Interestingly, antigen-specific Th1, Th2, and Th17 responses were down-regulated. Overall, these data imply that component(s) within SEA induce IL-1β production and unravel a crucial role of Nlrp3 during S. mansoni infection.
Resumo:
J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06935.x Abstract Apart of its well known function of 'energetic buffer' through the creatine/phosphocreatine/creatine kinase system allowing the regeneration of ATP, creatine has been recently suggested as a potential neuromodulator of even true neurotransmitter. Moreover, the recent discovery of primary creatine deficiency syndromes, due to deficiencies in l-arginine : glycine amidinotransferase or guanidinoacetate methyltransferase (the two enzymes allowing creatine synthesis) or in the creatine transporter, has shed new light on creatine synthesis, metabolism and transport, in particular in CNS which appears as the main tissue affected by these creatine deficiencies. Recent data suggest that creatine can cross blood-brain barrier but only with a poor efficiency, and that the brain must ensure parts of its needs in creatine by its own endogenous synthesis. Finally, the recent years have demonstrated the interest to use creatine as a neuroprotective agent in a growing number of neurodegenerative diseases, including Parkinson's and Huntington's diseases. This article aims at reviewing the latest data on creatine metabolism and transport in the brain, in relation to creatine deficiencies and to the potential use of creatine as neuroprotective molecule. Emphasis is also given to the importance of creatine for cerebral function.
Resumo:
The aims of this study were to assess whether high-mobility group box-1 protein can be determined in biological fluids collected during autopsy and evaluate the diagnostic potential of high-mobility group box-1 protein in identifying sepsis-related deaths. High-mobility group box-1 protein was measured in serum collected during hospitalization as well as in undiluted and diluted postmortem serum and pericardial fluid collected during autopsy in a group of sepsis-related deaths and control cases with noninfectious causes of death. Inclusion criteria consisted of full biological sample availability and postmortem interval not exceeding 6h. The preliminary results indicate that high-mobility group box-1 protein levels markedly increase after death. Concentrations beyond the upper limit of the calibration curve were obtained in undiluted postmortem serum in septic and traumatic control cases. In pericardial fluid, concentrations beyond the upper limit of the calibration curve were found in all cases. These findings suggest that the diagnostic potential of high-mobility group box-1 protein in the postmortem setting is extremely limited due to molecule release into the bloodstream after death, rendering antemortem levels difficult or impossible to estimate even after sample dilution.
Resumo:
Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.
Resumo:
The presence of intestinal helminths can down-regulate the immune response required to control mycobacterial infection. BALB/c mice infected with Mycobacterium bovis following an infection with the intestinal helminth Strongyloides venezuelensis showed reduced interleukin-17A production by lung cells and increased bacterial burden. Also, small granulomas and a high accumulation of cells expressing the inhibitory molecule CTLA-4 were observed in the lung. These data suggest that intestinal helminth infection could have a detrimental effect on the control of tuberculosis (TB) and render coinfected individuals more susceptible to the development of TB.
Resumo:
Morphogens of the Wnt protein family are the secreted lipoglycoprotein ligands which initiate several pathways heavily involved in the coordination of various developmental stages of organisms in the majority of animal species. Deregulation of these pathways in the adult leads to formation and sustaining of multiple types of cancer. The latter notion is reinforced by the fact that the very discovery of the first Wnt ligand was due to its role as the causative factor of carcinogenic transformation (Nusse and Varmus, 1982). Nowadays our knowledge on Wnt signaling has "moved with the times" and these pathways were identified to be often crucial for tumor formation, its interactions with the microenvironment, and promotion of the metastases (Huang and Du, 2008; Zerlin et al., 2008; Jessen, 2009). Thus the relevance of the pathway as the target for drug development has further increased in the light of modern paradigms of the complex cancer treatments which target also spreading and growth- promoting factors of tumors by specific and highly efficient substances (Pavet et al., 2010). Presently the field of the Wnt-targeting drug research is almost solely dominated by assays based on transcriptional activation induced by the signaling. This approach resulted in development of a number of promising substances (Lee et al., 2011). Despite its effectiveness, the method nevertheless suffers from several drawbacks. Among the major ones is the fact that this approach is prone to identify compounds targeting rather downstream effectors of the pathway, which are indiscriminately used by all the subtypes of the Wnt signaling. Additionally, proteins which are involved in several signaling cascades and not just the Wnt pathway turn out as targets of the new compounds. These issues increase risks of side effects due to off-target interactions and blockade of the pathway in healthy cells. In the present work we put forward a novel biochemical approach for drug development on the Wnt pathway. It targets Frizzleds (Fzs) - a family of 7-transmbembrane proteins which serve as receptors for Wnt ligands. They offer unique properties for the development of highly specific and effective drugs as they control all branches of the Wnt signaling. Recent advances in the understanding of the roles of heterotrimeric G proteins downstream from Fzs (Katanaev et al., 2005; Liu et al., 2005; Jernigan et al., 2010) suggest application of enzymatic properties of these effectors to monitor the receptor-mediated events. We have applied this knowledge in practice and established a specific and efficient method based on utilization of a novel high-throughput format of the GTP-binding assay to follow the activation of Fzs. This type of assay is a robust and well-established technology for the research and screenings on the GPCRs (Harrison and Traynor, 2003). The conventional method of detection involves the radioactively labeled non-hydrolysable GTP analog [35S]GTPyS. Its application in the large-scale screenings is however problematic which promoted development of the novel non-radioactive GTP analog GTP-Eu. The new molecule employs phenomenon of the time-resolved fluorescence to provide sensitivity comparable to the conventional radioactive substance. Initially GTP-Eu was tested only in one of many possible types of GTP-binding assays (Frang et al., 2003). In the present work we expand these limits by demonstrating the general comparability of the novel label with the radioactive method in various types of assays. We provide a biochemical characterization of GTP-Eu interactions with heterotrimeric and small GTPases and a comparative analysis of the behavior of the new label in the assays involving heterotrimeric G protein effectors. These developments in the GTP-binding assay were then applied to monitor G protein activation by the Fz receptors. The data obtained in mammalian cultured cell lines provides for the first time an unambiguous biochemical proof for direct coupling of Fzs with G proteins. The specificity of this interaction has been confirmed by the experiments with the antagonists of Fz and by the pertussis toxin-mediated deactivation. Additionally we have identified the specificity of Wnt3a towards several members of the Fz family and analyzed the properties of human Fz-1 which was found to be the receptor coupled to the Gi/o family of G proteins. Another process playing significant role in the functioning of every GPCR is endocytosis. This phenomenon can also be employed for drug screenings on GPCRs (Bickle, 2010). In the present work we have demonstrated that Drosophila Fz receptors are involved in an unusual for many GPCRs manifestation of the receptor-mediated internalization. Through combination of biochemical approaches and studies on Drosophila as the model organism we have shown that direct interactions of the Fzs and the α-subunit of the heterotrimeric G protein Go with the small GTPase Rab5 regulate internalization of the receptor in early endosomes. We provide data uncovering the decisive role of this self-promoted endocytosis in formation of a proper signaling output in the canonical as well as planar cell polarity (PCP) pathways regulated by Fz. The results of this work thus establish a platform for the high-throughput screening to identify substances active in the cancer-related Wnt pathways. This methodology has been adjusted and applied to provide the important insights in Fz functioning and will be instrumental for further investigations on the Wnt-mediated pathways.
Resumo:
Cyclin-dependent kinases (CDKs) inhibitors have emerged as interesting therapeutic candidates. Of these, (S)-roscovitine has been proposed as potential neuroprotective molecule for stroke while (R)-roscovitine is currently entering phase II clinical trials against cancers and phase I clinical tests against glomerulonephritis. In addition, (R)-roscovitine has been suggested as potential antihypertensive and anti-inflammatory drug. Dysfunction of intracellular calcium balance is a common denominator of these diseases, and the two roscovitine enantiomers (S and R) are known to modulate calcium voltage channel activity differentially. Here, we provide a detailed description of short- and long-term responses of roscovitine on intracellular calcium handling in renal epithelial cells. Short-term exposure to (S)-roscovitine induced a cytosolic calcium peak, which was abolished after stores depletion with cyclopiazonic acid (CPA). Instead, (R)-roscovitine caused a calcium peak followed by a small calcium plateau. Cytosolic calcium response was prevented after stores depletion. Bafilomycin, a selective vacuolar H(+)-ATPase inhibitor, abolished the small calcium plateau. Long-term exposure to (R)-roscovitine significantly reduced the basal calcium level compared to control and (S)-roscovitine treated cells. However, both enantiomers increased calcium accumulation in the endoplasmic reticulum (ER). Consistently, cells treated with (R)-roscovitine showed a significant increase in SERCA activity, whereas (S)-roscovitine incubation resulted in a reduced PMCA expression. We also found a tonic decreased ability to release calcium from the ER, likely via IP3 signaling, under treatment with (S)- or (R)-roscovitine. Together our data revealed that (S)-roscovitine and (R)-roscovitine exert distinct enantiospecific effects on intracellular calcium signaling in renal epithelial cells. This distinct pharmacological profile can be relevant for roscovitine clinical use.
Resumo:
Background: Targeted therapies for metastatic renal cell carcinoma (RCC), including mammalian target of rapamycin (mTOR) inhibitors and small-molecule multikinase inhibitors, have produced clinical effects. However, most patients acquire resistance over time. Thus, new therapeutic strategies need to be developed. Here, we evaluated the effect of the dual PI3K/mTOR inhibitor NVP-BEZ235, in combination with the multikinase inhibitor sorafenib on renal cancer cell proliferation and survival in vitro as well as on tumor growth in vivo.Methods: The renal carcinoma cell lines 786-0 and Caki-1 were treated with NVP-BEZ235 or sorafenib, either alone or in combination. Tumor cell proliferation and apoptosis were investigated in vitro. The anticancer efficacy of NVP-BEZ235 alone, or in combination with sorafenib, was also evaluated on RCC xenografts in nude mice.Results: Treatment of 786-0 and Caki-1 cells with NVP-BEZ235 or sorafenib resulted in reduced tumor cell proliferation and increased tumor cell apoptosis in vitro. The combination of NVP-BEZ235 and sorafenib was more effective than each compound alone. Similarly, in vivo, NVP-BEZ235 or sorafenib reduced the growth of xenografts generated from 786-0 or Caki-1 cells. The antitumor efficacy of NVP-BEZ235 in combination with sorafenib was superior to NVP-BEZ235 or sorafenib alone.Conclusions: Our findings indicate that the simultaneous use of NVP-BEZ235 and sorafenib has greater antitumor benefit compared to either drug alone and thus provides a treatment strategy in RCC.
Resumo:
Adhesive interactions with stromal cells and the extracellular matrix are essential for the differentiation and migration of hematopoietic progenitors. In the erythrocytic lineage, a number of adhesion molecules are expressed in the developing erythrocytes and are thought to play a role in the homing and maturation of erythrocytic progenitors. However, many of these molecules are lost during the final developmental stages leading to mature erythrocytes. One of the adhesion molecules that remains expressed in mature, circulating erythrocytes is CD147. This study shows that blockade of this molecule on the cell surface by treatment with F(ab')(2) fragments of anti-CD147 monoclonal antibody disrupts the circulation of erythrocytes, leading to their selective trapping in the spleen. Consequently, mice develop an anemia, and de novo, erythropoietin-mediated erythropoiesis in the spleen. In contrast, these changes were not seen in mice similarly treated with another antierythrocyte monoclonal antibody with a different specificity. These results suggest that the CD147 expressed on erythrocytes likely plays a critical role in the recirculation of mature erythrocytes from the spleen into the general circulation. (Blood. 2001;97:3984-3988)
Resumo:
Exacerbations of COPD (ECOPD) represent a major burden for patients and health care systems. Innovative sampling techniques have led to the identification of several pulmonary biomarkers. Although some molecules are promising, their usefulness in clinical practice is not yet established. Medline and Highwire databases were used to identify studies evaluating pulmonary sampled biomarkers in ECOPD. We combined 3 terms for ECOPD, 3 for biomarkers and 6 for the sampling method. Seventy-nine studies were considered eligible for inclusion in the review and were analyzed further. Pulmonary biomarkers sampled with non-invasive, semi-invasive and invasive methods were evaluated for their potential to illustrate the disease's clinical course, to correlate to clinical variables and to predict clinical outcomes, ECOPD etiology and response to treatment. According to published data several pulmonary biomarkers assessed in ECOPD have the potential to illustrate the natural history of disease through the modification of their levels. Among the clinically relevant molecules, those that have been studied the most and appear to be promising are spontaneous and induced sputum biomarkers for reflecting clinical severity and symptomatic recovery, as well as for directing towards an etiological diagnosis. Current evidence on the clinical usefulness of exhaled breath condensate and bronchoalveolar lavage biomarkers in ECOPD is limited. In conclusion, pulmonary biomarkers have the potential to provide information on the mechanisms underlying ECOPD, and several correlate with clinical variables and outcomes. However, on the basis of published evidence, no single molecule is adequately validated for wide clinical use. Clinical trials that incorporate biomarkers in decisional algorithms are required.
Resumo:
The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.
Resumo:
Studies on designed peptides that exhibit high tendencies for medium-induced conformational transitions have recently attracted much attention because structural changes are considered as molecular key processes in degenerative diseases. The experimental access to these events has been limited so far mainly due to the intrinsic tendency of the involved polypeptides for self-association and aggregation, e.g. amyloid P plaque formation, thought to be at the origin of Alzheimer's disease. We have developed a new concept termed 'switch-peptides' which allows the controlled onset of polypeptide folding and misfolding in vitro and in vivo, starting from a soluble, non-toxic precursor molecule. As a major feature, the folding process is initiated by enzyme-triggered N,O-acyl migrations restoring the native peptide backbone in situ. As the folding is set off in the moment of creating the bioactive molecule ('in statu nascendi', ISN), our concept allows for the first time the investigation of the early steps of protein misfolding as relevant in degenerative diseases, opening new perspectives for the rational design of therapeutically relevant compounds.