949 resultados para molecular evolution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthetic organic compound λ(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe3+ magnetic ions in these phase transition. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe3+ ions are replaced by non-magnetic Ga3+ ions. We show how Hc can be extracted from the observed splitting of the Shybnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials. We also show that at high fields the spin fluctuations of the localized spins are not important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two internal transcribed spacers (ITS) of ribosomal DNA are often used as markers of populations of insects. We studied the ITS2 of the head lice and body lice of humans, to determine whether this gene is a suitable marker of populations of these insects. ITS2 sequences were amplified by PCR from lice from four different countries: Australia, China, Japan and the USA. Direct cycle-sequencing of some of these PCR products gave equivocal nucleotide chromatograms. This indicated that some lice had more than one ITS2 sequence, so we cloned PCR products from these lice. Temperature gradient gel electrophoresis (TGGE) revealed that 50 of the 67 clones we screened had different nucleotide sequences. All lice had several ITS2 types, including those with unequivocal chromatograms. A phylogenetic tree of 15 different ITS2 sequences showed that the sequences from individual lice were not monophyletic. We conclude that the ITS2 is not a useful marker of populations for Pediculus humanus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame. A third incomplete genomic copy of MdmaT was also identified upstream of the putative M. domestica period gene. The MdmaT sequences showed high identity to the transposable element Bmmar1 from the silk-worm moth, Bombyx mori, and to previously unidentified sequences in the genome of Caenorhabditis elegans. A total of 16 copies of full-length maT sequences were identified in the C elegans genome, representing three variants of the transposon, with 34%-100% identity amongst them. Twelve of the copies, named CemaT1, were virtually identical, with eight of them encoding a putative full length, intact transposase. Secondary structure predictions and phylogenetic analyses confirm that maT elements belong to the mariner-Tc1 superfamily of transposons, but their intermediate sequence and predicted structural characteristics suggest that they belong to a unique clade, distinct from either mariner-like or Tc1-like elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directed evolution of cytochrome P450 enzymes represents an attractive means of generating novel catalysts for specialized applications. Xenobiotic-metabolizing P450s are particularly well suited to this approach due to their inherent wide substrate specificity. In the present study, a novel method for DNA shuffling was developed using an initial restriction enzyme digestion step, followed by elimination of long parental sequences by size-selective filtration. P450 2C forms were subjected to a single round of shuffling then coexpressed with reductase in E. coli. A sample (54 clones) of the resultant library was assessed for sequence diversity, hemo- and apoprotein expression, and activity towards the substrate indole. All mutants showed a different RFLP pattern compared to all parents, suggesting that the library was free from contamination by parental forms. Haemoprotein expression was detectable in 45/54 (83%) of the mutants sampled. Indigo production was less than or comparable to the activities of one or more of the parental P450s, but three mutants showed indirubin production in excess of that seen with any parental form, representing a gain of function. In conclusion, a method is presented for the effective shuffling of P450 sequences to generate diverse libraries of mutant P450s containing a high proportion of correctly folded hemoprotein, and minimal contamination with parental forms.