973 resultados para molecular biochemical characterisation
Resumo:
Experimental protocols that allow confident assignment of signaling proteins to specific subdomains of the plasma membrane are essential for a full understanding of the complexities of signal transduction. This is especially relevant for Ras proteins, where the different membrane anchors of the Ras isoforms target them to functionally distinct microdomains that in turn allow quantitatively different signal outputs from otherwise highly homologous proteins. The methods outlined in this chapter, in addition to being invaluable in addressing Ras function, should also have wide utility in the study of many mammalian signal transduction pathways.
Resumo:
The Ras GTPases operate as molecular switches that link extracellular stimuli with a diverse range of biological outcomes. Although many studies have concentrated on the protein-protein interactions within the complex signaling cascades regulated by Ras, it is becoming clear that the spatial orientation of different Ras isoforms within the plasma membrane is also critical for their function. H-Ras, N-Ras and K-Ras use different membrane anchors to attach to the plasma membrane. Recently it has been shown that these anchors also act as trafficking signals that direct palmitoylated H-Ras and N-Ras through the exocytic pathway to the cell surface but divert polybasic K-Ras around the Golgi to the plasma membrane via an as yet-unidentified-route. Once at the plasma membrane, H-Ras and :K-Ras operate in different microdomains. K-Ras is localized predominantly to the disordered plasma membrane, whereas H-Ras exists in a GTP-regulated equilibrium between disordered plasma membrane and cholesterol-rich lipid rafts. These observations provide a likely explanation for the increasing number of biological differences being identified between the otherwise highly homologous Ras isoforms and raise interesting questions about the role membrane microlocalization plays in determining the interactions of Ras with its effecters and exchange factors.
Resumo:
Background Progress in identifying genetic factors protective against alcohol dependence (AlcD) requires a paradigm shift in psychiatric epidemiology. Aims To integrate analysis of research into the genetics of alcoholism. Method Data from prospective questionnaire and interview surveys of the Australian twin panel, and from a subsample who underwent alcohol challenge, were analysed. Results In men, effects of alcohol dehydrogenase ADH2*1/*2 genotype or high alcohol sensitivity (risk-decreasing), and of history of childhood conduct disorder, or having monozygotic co-twin or twin sister with AlcD (risk-increasing) were significant and comparable in magnitude. Religious affiliation (Anglican versus other) was associated with the ADH2 genotype, but did not explain the associations with AlcD symptoms. No protective effect of the ADH2*1/*2 genotype was observed in women. Conclusions The early onset and strong familial aggregation of AlcD, and opportunity for within-family tests of genetic association to avoid confounding effects, make epidemiological family studies of adolescents and young adults and their families a priority.
Resumo:
Primary aldosteronism (PAL) may be as much as ten times more common than has been traditionally thought, with most patients normokalemic. The study of familial varieties has facilitated a fuller appreciation of the nature and diversity of its clinical, biochemical, morphological and molecular aspects. In familial hyperaldosteronism type I (FH-I), glucocorticoid-remediable PAL is caused by inheritance of an ACTH-regulated, hybrid CYP11B1/CYP11B2 gene. Genetic testing has greatly facilitated diagnosis. Hypertension severity varies widely, demonstrating relationships with gender, affected parent's gender, urinary kallikrein level, degree of biochemical disturbance and hybrid gene crossover point position. Analyses of aldosterone/PRA/cortisol 'day-curves' have revealed that (1) the hybrid gene dominates over wild type CYP11B2 in terms of aldosterone regulation and (2) correction of hypertension in FH-I requires only partial suppression of ACTH, and much smaller glucocorticoid doses than those previously recommended. Familial hyperaldosteronism type II is not glucocorticoid-remediable, and is clinically, biochemically and morphologically indistinguishable from apparently sporadic PAL. In one informative family available for linkage analysis, FH-II does not segregate with either the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7. As has already occurred in FH-I, elucidation of causative mutations is likely to facilitate earlier detection of PAL and other curable or specifically treatable forms of hypertension. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Phenylalanine hydroxylase (PAH) is activated by its substrate phenylalanine and inhibited by its cofactor tetrahydrobiopterin (BH4). The crystal structure of PAH revealed that the N-terminal sequence of the enzyme (residues 19-29) partially covered the enzyme active site, and suggested its involvement in regulation. We show that the protein lacking this N-terminal sequence does not require activation by phenylalanine, shows an altered structural response to phenylalanine, and is not inhibited by BH4. Our data support the model where the N-terminal sequence of PAH acts as an intrasteric autoregulatory sequence, responsible for transmitting the effect of phenylalanine activation to the active site, (C) 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Forkhead-associated (FHA) domains are modular protein–protein interaction domains of ~130 amino acids present in numerous signalling proteins. FHA-domain-dependent protein interactions are regulated by phosphorylation of target proteins and FHA domains may be multifunctional phosphopeptide-recognition modules. FHA domains of the budding yeast cell-cycle checkpoint protein kinases Dun1p and Rad53p have been crystallized. Crystals of the Dun1-FHA domain exhibit the symmetry of the space group P6122 or P6522, with unit-cell parameters a = b = 127.3, c = 386.3 Å; diffraction data have been collected to 3.1 Å resolution on a synchrotron source. Crystals of the N-terminal FHA domain (FHA1) of Rad53p diffract to 4.0 Å resolution on a laboratory X-ray source and have Laue-group symmetry 4/mmm, with unit-cell parameters a = b = 61.7, c = 104.3 Å.
Resumo:
A method is described whereby sedimentation velocity is combined with equilibrium dialysis to determine the net charge (valence) of a protein by using chromate as an indicator ion for assessing the extent of the Donnan redistribution of small ions. The procedure has been used in experiments on bovine serum albumin under slightly alkaline conditions (pH 8.0, I 0.05) to illustrate its application to a system in which the indicator ion and protein both bear net negative charge and on lysozyme under slightly acidic conditions (pH 5.0, I 0.10) to illustrate the situation where chromate is a counterion. (C) 2001 Elsevier Science.
Resumo:
Published results on the inhibitory effects of small cosolutes on adenosine deamination by adenosine deaminase [Kurz. L. C.. Weitkamp, E., and Frieden, C. (1987) Biochemistry 26, 3027-3032; Dzingeleski, G., and Wolfenden, R. (1993) Biochemistry 32, 9143 -9147] have been reexamined. Results for sucrose, dioxane, methanol, and ethanol are shown to be qualitatively consistent with thermodynamic interpretation in terms of molecular crowding effects arising from the occurrence of a minor increase in enzyme volume and/or asymmetry during the kinetic reaction-a conformational transition that could be either preexisting or ligand induced. Direct evidence for the existence of the putative isomeric transition is provided by active enzyme gel chromatography on Sephadex G-100, which demonstrates a negative dependence of enzyme elution volume upon substrate concentration and is therefore consistent with substrate-mediated conformational changes that favor a larger (or more asymmetric) isomeric state of the enzyme. There are thus experimental grounds for adopting the present description of the inhibitory effects of unrelated cosolutes on the kinetics of adenosine deamination by adenosine deaminase in terms of thermodynamic nonideality.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
The catalytic properties of enzymes are usually evaluated by measuring and analyzing reaction rates. However, analyzing the complete time course can be advantageous because it contains additional information about the properties of the enzyme. Moreover, for systems that are not at steady state, the analysis of time courses is the preferred method. One of the major barriers to the wide application of time courses is that it may be computationally more difficult to extract information from these experiments. Here the basic approach to analyzing time courses is described, together with some examples of the essential computer code to implement these analyses. A general method that can be applied to both steady state and non-steady-state systems is recommended. (C) 2001 academic Press.
Resumo:
Circulating GH consists of multiple molecular isoforms, all derived from the one gene in nonpregnant humans. To assess the effect of a potent stimulus to pituitary secretion on GH isoforms, we studied 17 aerobically trained males (age, 26.9 +/- 1.5 yr) in a randomized, repeat measures study of rest vs. exercise. Exercise consisted of continuous cycle ergometry at approximately 80% of predetermined maximal oxygen uptake for 20 min. Serum was assayed for total, pituitary, 22-kDa, recombinant, non-22-kDa, 20-kDa, and immunofunctional GH. All isoforms increased during, peaked at the end, and declined after exercise. At peak exercise, 22-kDa GH was the predominant isoform. After exercise, the ratios of non-22 kDa/total GH and 20-kDa GH/total GH increased and those of recombinant/pituitary GH decreased. The disappearance half-times for pituitary GH and 20-kDa GH were significantly longer than those for all other isoforms. We conclude that 1) all molecular isoforms of GH measured increased with and peaked at the end of acute exercise, with 22-kBa GH constituting the major isoform in serum during exercise; and 2) the proportion of non-22-kDa isoforms increased after exercise due in part to slower disappearance rates of 20-kDa and perhaps other non-22-kDa GH isoforms. It remains to be determined whether the various biological actions of different GH isoforms impact on postexercise homeostasis.
Resumo:
The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxyterminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan.
Resumo:
A simulation of competitively primed allele-specific DNA amplification has been constructed and its behavior examined, This has shown that when the ratio of the amount of homoduplex misprime product to the total amount of amplimer is low, it increases by approximately one-fourth of the mispriming frequency with each doubling of the total amount of amplimer, When the ratio is high acid reverse mispriming becomes significant, it asymptotes toward a value
Resumo:
Conventional methods for detecting differences in microsatellite repeat lengths rely on electrophoretic fractionation on long denaturing polyacrylamide gels, a time-consuming and labor-intensive method. Therefore, there is a need for the development of new and rapid approaches to routinely detect such length polymorphisms. The advent of techniques allowing the coupling of DNA molecules to solid surfaces has provided new prospects in the area of mutation. We describe here the development and optimization of the ligase-assisted spacer addition (LASA) method, a novel and rapid procedure based on an ELISA format to measure microsatellite repeat lengths. The LASA assay was successfully applied to a set of 11 bird samples to assess its capability as a genotyping method.
Resumo:
Despite a large number of T cells infiltrating the liver of patients with chronic hepatitis B, little is known about their complexity or specificity. To characterize the composition of these T cells involved with the pathogenesis of chronic hepatitis B (CHB), we have studied the clonality of V beta T cell receptor (TCR)-bearing populations in liver tissue by size spectratyping the complementarity-determining region (CDR3) lengths of TCR transcripts. We have also compared the CDR3 profiles of the lymphocytes infiltrating the liver with those circulating in the blood to see whether identical clonotypes may be detected that would indicate a virus-induced expansion in both compartments. Our studies show that in most of the patients examined, the T cell composition of liver infiltrating lymphocytes is highly restricted, with evidence of clonotypic expansions in 4 to 9 TCR V beta subfamilies. In contrast, the blood compartment contains an average of 1 to 3 expansions. This pattern is seen irrespective of the patient's viral load or degree of liver pathology. Although the TCR repertoire profiles between the 2 compartments are generally distinct, there is evidence of some T cell subsets being equally distributed between the blood and the liver. Finally, we provide evidence for a putative public binding motif within the CDR3 region with the sequence G-X-S, which may be involved with hepatitis B virus recognition.