956 resultados para merging units
Resumo:
Measurement of glycated haemoglobin A (HbA) provides an indication of longer-term glycaemic control. Standardisation of this test between laboratories is difficult to achieve, and most assays are currently calibrated to the values used in the Diabetes Control and Complications Trial (DCCT-aligned). With the availability of more specific reference standards it is now proposed that HbA is expressed as mmol HbA per mol of non-glycated haemoglobin. An HbA of 7% is approximately equal to 53 mmol/mol.
Resumo:
Data Envelopment Analysis (DEA) is recognized as a modern approach to the assessment of performance of a set of homogeneous Decision Making Units (DMUs) that use similar sources to produce similar outputs. While DEA commonly is used with precise data, recently several approaches are introduced for evaluating DMUs with uncertain data. In the existing approaches many information on uncertainties are lost. For example in the defuzzification, the a-level and fuzzy ranking approaches are not considered. In the tolerance approach the inequality or equality signs are fuzzified but the fuzzy coefficients (inputs and outputs) are not treated directly. The purpose of this paper is to develop a new model to evaluate DMUs under uncertainty using Fuzzy DEA and to include a-level to the model under fuzzy environment. An example is given to illustrate this method in details.
Resumo:
DEA literature continues apace but software has lagged behind. This session uses suitably selected data to present newly developed software which includes many of the most recent DEA models. The software enables the user to address a variety of issues not frequently found in existing DEA software such as: -Assessments under a variety of possible assumptions of returns to scale including NIRS and NDRS; -Scale elasticity computations; -Numerous Input/Output variables and truly unlimited number of assessment units (DMUs) -Panel data analysis -Analysis of categorical data (multiple categories) -Malmquist Index and its decompositions -Computations of Supper efficiency -Automated removal of super-efficient outliers under user-specified criteria; -Graphical presentation of results -Integrated statistical tests
Resumo:
In this paper we propose algorithms for combining and ranking answers from distributed heterogeneous data sources in the context of a multi-ontology Question Answering task. Our proposal includes a merging algorithm that aggregates, combines and filters ontology-based search results and three different ranking algorithms that sort the final answers according to different criteria such as popularity, confidence and semantic interpretation of results. An experimental evaluation on a large scale corpus indicates improvements in the quality of the search results with respect to a scenario where the merging and ranking algorithms were not applied. These collective methods for merging and ranking allow to answer questions that are distributed across ontologies, while at the same time, they can filter irrelevant answers, fuse similar answers together, and elicit the most accurate answer(s) to a question.
Resumo:
This paper explores the potential for cost savings in the general Practice units of a Primary Care Trust (PCT) in the UK. We have used Data Envelopment Analysis (DEA) to identify benchmark Practices, which offer the lowest aggregate referral and drugs costs controlling for the number, age, gender, and deprivation level of the patients registered with each Practice. For the remaining, non-benchmark Practices, estimates of the potential for savings on referral and drug costs were obtained. Such savings could be delivered through a combination of the following actions: (i) reducing the levels of referrals and prescriptions without affecting their mix (£15.74 m savings were identified, representing 6.4% of total expenditure); (ii) switching between inpatient and outpatient referrals and/or drug treatment to exploit differences in their unit costs (£10.61 m savings were identified, representing 4.3% of total expenditure); (iii) seeking a different profile of referral and drug unit costs (£11.81 m savings were identified, representing 4.8% of total expenditure). © 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to identify benchmark cost-efficient General Practitioner (GP) units at delivering health care in the Geriatric and General Medicine (GMG) specialty and estimate potential cost savings. The use of a single medical specialty makes it possible to reflect more accurately the medical condition of the List population of the Practice so as to contextualize its expenditure on care for patients. We use Data Envelopment Analysis (DEA) to estimate the potential for cost savings at GP units and to decompose these savings into those attributable to the reduction of resource use, to altering the mix of resources used and to those attributable to securing better resource 'prices'. The results reveal a considerable potential for savings of varying composition across GP units. © 2013 Elsevier Ltd.
Resumo:
Measurement of lung ventilation is one of the most reliable techniques in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional methods using hyperpolarized H 3He and 1H magnetic resonance imageries have recently been improved by an automated technique based on 'multiple active contour evolution'. This method involves a simultaneous evolution of multiple initial conditions, called 'snakes', eventually leading to their 'merging' and is entirely independent of the shapes and sizes of snakes or other parametric details. The objective of this paper is to show, through a theoretical analysis, that the functional dynamics of merging as depicted in the active contour method has a direct analogue in statistical physics and this explains its 'universality'. We show that the multiple active contour method has an universal scaling behaviour akin to that of classical nucleation in two spatial dimensions. We prove our point by comparing the numerically evaluated exponents with an equivalent thermodynamic model. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
The operation of technical processes requires increasingly advanced supervision and fault diagnostics to improve reliability and safety. This paper gives an introduction to the field of fault detection and diagnostics and has short methods classification. Growth of complexity and functional importance of inertial navigation systems leads to high losses at the equipment refusals. The paper is devoted to the INS diagnostics system development, allowing identifying the cause of malfunction. The practical realization of this system concerns a software package, performing a set of multidimensional information analysis. The project consists of three parts: subsystem for analyzing, subsystem for data collection and universal interface for open architecture realization. For a diagnostics improving in small analyzing samples new approaches based on pattern recognition algorithms voting and taking into account correlations between target and input parameters will be applied. The system now is at the development stage.
Resumo:
Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
Resumo:
This article presents the principal results of the Ph.D. thesis Intelligent systems in bioinformatics: mapping and merging anatomical ontologies by Peter Petrov, successfully defended at the St. Kliment Ohridski University of Sofia, Faculty of Mathematics and Informatics, Department of Information Technologies, on 26 April 2013.
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.