947 resultados para maternally-mediated genotype effect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kallikrein-Kinin System (KKS) has been associated to inflammatory and immunogenic responses in the peripheral and central nervous system by the activation of two receptors, namely B1 receptor and B2 receptor. The B1 receptor is absent or under-expressed in physiological conditions, being up-regulated during tissue injury or in the presence of cytokines. The B2 receptor is constitutive and mediates most of the biological effects of kinins. Some authors suggest a link between the KKS and the neuroinflammation in Alzheimer`s disease (AD). We have recently described an increase in bradykinin (BK) in the cerebrospinal fluid and in densities of B1 and B2 receptors in brain areas related to memory, after chronic infusion of amyloid-beta (A beta) peptide in rats, which was accompanied by memory disruption and neuronal loss. Mice lacking B1 or B2 receptors presented reduced cognitive deficits related to the learning process, after acute intracerebroventricular (i.c.v). administration of A. Nevertheless, our group showed an early disruption of cognitive function by i.c.v. chronic infusion of A beta after a learned task, in the knock-out B2 mice. This suggests a neuroprotective role for B2 receptors. In knock-out B1 mice the memory disruption was absent, implying the participation of this receptor in neurodegenerative processes. The acute or chronic infusion of A beta can lead to different responses of the brain tissue. In this way, the proper involvement of KKS on neuroinflammation in AD probably depends on the amount of A beta injected. Though, BK applied to neurons can exert inflammatory effects, whereas in glial cells, BK can have a potential protective role for neurons, by inhibiting proinflammatory cytokines. This review discusses this duality concerning the KKS and neuroinflammation in AD in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared four different intensities of a bench press exercise for muscle soreness, creatine kinase activity, interleukin (IL)-1, IL-6, tumor necrosis factor- (TNF-), and prostaglandin E2 (PGE2) concentrations in the blood. Thirty-five male Brazilian Army soldiers were randomly assigned to one of five groups: 50% one-repetition maximum (1-RM), 75% 1-RM, 90% 1-RM, 110% 1-RM, and a control group that did not perform the exercise. The total volume (setsrepetitionsload) of the exercise was matched among the exercise groups. Muscle soreness and plasma creatine kinase activity increased markedly (P0.05) after exercise, with no significant differences among the groups. Serum PGE2 concentration also increased markedly (P0.05) after exercise, with a significantly (P0.05) greater increase in the 110% 1-RM group compared with the other groups. A weak but significant (P0.05) correlation was found between peak muscle soreness and peak PGE2 concentration, but no significant correlation was evident between peak muscle soreness and peak creatine kinase activity, or peak creatine kinase activity and peak PGE2 concentration. All groups showed no changes in IL-1, IL-6 or TNF-. Our results suggest that the intensity of bench press exercise does not affect the magnitude of muscle soreness and blood markers of muscle damage and inflammation.