994 resultados para marker-assisted selection (MAS)
Resumo:
PURPOSE: Although the central role of the immune system for tumor prognosis is generally accepted, a single robust marker is not yet available. EXPERIMENTAL DESIGN: On the basis of receiver operating characteristic analyses, robust markers were identified from a 60-gene B cell-derived metagene and analyzed in gene expression profiles of 1,810 breast cancer; 1,056 non-small cell lung carcinoma (NSCLC); 513 colorectal; and 426 ovarian cancer patients. Protein and RNA levels were examined in paraffin-embedded tissue of 330 breast cancer patients. The cell types were identified with immunohistochemical costaining and confocal fluorescence microscopy. RESULTS: We identified immunoglobulin κ C (IGKC) which as a single marker is similarly predictive and prognostic as the entire B-cell metagene. IGKC was consistently associated with metastasis-free survival across different molecular subtypes in node-negative breast cancer (n = 965) and predicted response to anthracycline-based neoadjuvant chemotherapy (n = 845; P < 0.001). In addition, IGKC gene expression was prognostic in NSCLC and colorectal cancer. No association was observed in ovarian cancer. IGKC protein expression was significantly associated with survival in paraffin-embedded tissues of 330 breast cancer patients. Tumor-infiltrating plasma cells were identified as the source of IGKC expression. CONCLUSION: Our findings provide IGKC as a novel diagnostic marker for risk stratification in human cancer and support concepts to exploit the humoral immune response for anticancer therapy. It could be validated in several independent cohorts and carried out similarly well in RNA from fresh frozen as well as from paraffin tissue and on protein level by immunostaining.
Resumo:
Although cardiac stem cells have been isolated based on stem cell surface markers, no single marker is stem cell-specific. Clonogenicity is a defining functional property of stemness. We therefore analyzed cardiac cell clones derived from human hearts.Methods: Clonogenic cells were derived from adult human atrial samples. Cells were either cultured in the absence of an initial marker selection or, in separate experiments, they were initially selected for c-kit (CD117), CD31 or CD164 by magnetic immunobeads, or for high aldehyde dehydrogenase activity (ALDH) by FACS. High ALDH activity has been linked to stem/progenitor cells in several tissues. Surface marker analysis was performed by flow cytometry. Cultured cells were also exposed to different factors that modulate cell differentiation, including Dikkopf-1, Noggin, and Wnt-5.Results: Clonogenic cells mainly showed fibroblast-like morphology, ability to grow for more than 30 passages in vitro, and a heterogeneous marker profile even in clones derived from the same cardiac sample. The predominant phenotype was positive for CD13, CD29, CD31, CD44, CD54, CD105 and CD146, but negative for CD10, CD11b, CD14, CD15, CD34, CD38, CD45, CD56, CD106, CD117, CD123, CD133, CD135 and CD271, primarily consistent with endothelial/vascular progenitor cells. However, a minority of clones showed a different profile characterized by expression of CD90, CD106 and CD318, but not CD31 and CD146, consistent with mesenchymal stem/progenitor cells. When initial cell selection was performed, both phenotypes were observed, similarly to unselected cells, irrespective of the selection marker used. Of note, CD117+ sorted cell clones were CD117-negative in culture. Regardless of the immunophenotype, several clones were able to form spheric cell aggregates (cardiospheres), a distinct stem cell property. Dikkopf-1 induced marked CD15 and CD106 upregulation, consistent with stromal differentiation; this effect was prevented by Noggin.Conclusions: The adult human heart contains clonogenic stem/progenitor cells that can be expanded for many passages and form cardiospheres. The surface marker profile of these cells is heterogeneous, consistent with a majority of clones being comprised of endothelial or vascular progenitor cells and a minority of clones consisting of mesenchymal stem/progenitor cells. Dikkopf-1 and Noggin showed opposing effects on stromal differentiation of human cardiac cell clones.
Resumo:
Astonishing as it may seem, one organism's waste is often ideal food for another. Many waste products generated by human activities are routinely degraded by microorganisms under controlled conditions during waste-water treatment. Toxic pollutants resulting from inadvertent releases, such as oil spills, are also consumed by bacteria, the simplest organisms on Earth. Biodegradation of toxic or particularly persistent compounds, however, remains problematic. What has escaped the attention of many is that bacteria exposed to pollutants can adapt to them by mutating or acquiring degradative genes. These bacteria can proliferate in the environment as a result of the selection pressures created by pollutants. The positive outcome of selection pressure is that harmful compounds may eventually be broken down completely through biodegradation. The downside is that biodegradation may require extremely long periods of time. Although the adaptation process has been shown to be reproducible, it remains very difficult to predict.
Resumo:
Selectome (http://selectome.unil.ch/) is a database of positive selection, based on a branch-site likelihood test. This model estimates the number of nonsynonymous substitutions (dN) and synonymous substitutions (dS) to evaluate the variation in selective pressure (dN/dS ratio) over branches and over sites. Since the original release of Selectome, we have benchmarked and implemented a thorough quality control procedure on multiple sequence alignments, aiming to provide minimum false-positive results. We have also improved the computational efficiency of the branch-site test implementation, allowing larger data sets and more frequent updates. Release 6 of Selectome includes all gene trees from Ensembl for Primates and Glires, as well as a large set of vertebrate gene trees. A total of 6810 gene trees have some evidence of positive selection. Finally, the web interface has been improved to be more responsive and to facilitate searches and browsing.
Resumo:
Context: Until now, the testosterone/epitestosterone (T/E) ratio is the main marker for detection of testosterone (T) misuse in athletes. As this marker can be influenced by a number of confounding factors, additional steroid profile parameters indicating T misuse can provide substantiating evidence of doping with endogenous steroids. The evaluation of a steroid profile is currently based upon population statistics. Since large inter-individual variations exist, a paradigm shift towards subject-based references is ongoing in doping analysis. Objective: Proposition of new biomarkers for the detection of testosterone in sports using extensive steroid profiling and an adaptive model based upon Bayesian inference. Subjects: 6 healthy male volunteers were administered with testosterone undecanoate. Population statistics were performed upon steroid profiles from 2014 male Caucasian athletes participating in official sport competition. Design: An extended search for new biomarkers in a comprehensive steroid profile combined with Bayesian inference techniques as used in the Athlete Biological Passport resulted in a selection of additional biomarkers that may improve detection of testosterone misuse in sports. Results: Apart from T/E, 4 other steroid ratios (6α-OH-androstenedione/16α-OH-dehydroepiandrostenedione, 4-OH-androstenedione/16α-OH-androstenedione, 7α-OH-testosterone/7β-OH-dehydroepiandrostenedione and dihydrotestosterone/5β-androstane-3α,17β-diol) were identified as sensitive urinary biomarkers for T misuse. These new biomarkers were rated according to relative response, parameter stability, detection time and discriminative power. Conclusion: Newly selected biomarkers were found suitable for individual referencing within the concept of the Athlete's Biological Passport. The parameters showed improved detection time and discriminative power compared to the T/E ratio. Such biomarkers can support the evidence of doping with small oral doses of testosterone.
Resumo:
In a recent paper, Traulsen and Nowak use a multilevel selection model to show that cooperation can be favored by group selection in finite populations [Traulsen A, Nowak M (2006) Proc Natl Acad Sci USA 103:10952-10955]. The authors challenge the view that kin selection may be an appropriate interpretation of their results and state that group selection is a distinctive process "that permeates evolutionary processes from the emergence of the first cells to eusociality and the economics of nations." In this paper, we start by addressing Traulsen and Nowak's challenge and demonstrate that all their results can be obtained by an application of kin selection theory. We then extend Traulsen and Nowak's model to life history conditions that have been previously studied. This allows us to highlight the differences and similarities between Traulsen and Nowak's model and typical kin selection models and also to broaden the scope of their results. Our retrospective analyses of Traulsen and Nowak's model illustrate that it is possible to convert group selection models to kin selection models without disturbing the mathematics describing the net effect of selection on cooperation.
Resumo:
Recent guidelines recommend initiation of antihypertensive therapy with fixed-dose combinations in high-risk patients because such patients usually need two or more blood pressure (BP)-lowering agents in order to normalize their BP. Agents that block the renin-angiotensin system (ACE inhibitors or angiotensin II receptor antagonists [angiotensin receptor blockers; ARBs]) are preferred for the management of hypertension in most patients exhibiting subclinical target organ damage, or established cardiovascular or renal diseases. Unless contraindicated they should be one of the components of fixed-dose combinations, whereas the other component may be either a calcium channel antagonist or a thiazide diuretic. Fixed-dose combinations containing an ACE inhibitor or ARB plus a calcium channel antagonist appear particularly effective in preventing complications of coronary heart disease.
Resumo:
Embryonic stem (ES) cell-derived cardiomyocytes recapitulate cardiomyogenesis in vitro and are a potential source of cells for cardiac repair. However, this requires enrichment of mixed populations of differentiating ES cells into cardiomyocytes. Toward this goal, we have generated bicistronic vectors that express both the blasticidin S deaminase (bsd) gene and a fusion protein consisting of either myosin light chain (MLC)-3f or human alpha-actinin 2A and enhanced green fluorescent protein (EGFP) under the transcriptional control of the alpha-cardiac myosin heavy chain (alpha-MHC) promoter. Insertion of the DNase I-hypersensitive site (HS)-2 element from the beta-globin locus control region, which has been shown to reduce transgene silencing in other cell systems, upstream of the transgene promoter enhanced MLC3f-EGFP gene expression levels in mouse ES cell lines. The alpha-MHC-alpha-actinin-EGFP, but not the alpha-MHC-MLC3f-EGFP, construct resulted in the correct incorporation of the newly synthesized fusion protein at the Z-band of the sarcomeres in ES cell-derived cardiomyocytes. Exposure of embryoid bodies to blasticidin S selected for a relatively pure population of cardiomyocytes within 3 days. Myofibrillogenesis could be monitored by fluorescence microscopy in living cells due to sarcomeric epitope tagging. Therefore, this genetic system permits the rapid selection of a relatively pure population of developing cardiomyocytes from a heterogeneous population of differentiating ES cells, simultaneously allowing monitoring of early myofibrillogenesis in the selected myocytes
Resumo:
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.
Resumo:
Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.
Resumo:
The dress code of paper wasps, like that of humans, is related to their social habits: species with a flexible nest-founding strategy have highly variable black-and-yellow markings. This color polymorphism facilitates individual recognition and might have been selected to permit complex social interactions.
Resumo:
Parasite-mediated sexual selection may arise as a consequence of 1) females avoiding mates with directly transmitted parasites, 2) females choosing less-parasitized males that provide parental care of superior quality, or 3) females choosing males with few parasites in order to obtain genes for parasite resistance in their offspring. Studies of specific host-parasite systems and comparative analyses have revealed both supportive and conflicting evidence for these hypotheses. A meta-analysis of the available evidence revealed a negative relationship between parasite load and the expression of male secondary sexual characters. Experimental studies yielded more strongly negative relationships than observations did, and the relationships were more strongly negative for ectoparasites than for endoparasites. There was no significant difference in the magnitude of the negative effect for species with and without male parental care, or between behavioral and morphological secondary sexual characters. There was a significant difference between studies based on host immune function and those based on parasite loads, with stronger effects for measures of immune function, suggesting that the many negative results from previous analyses of parasite-mediated sexual selection may be explained because relatively benign parasites were studied. The multivariate analyses demonstrating strong effect sizes of immune function in relation to the expression of secondary sexual characters, and for species with male parental care as compared to those without, suggest that parasite resistance may be a general determinant of parasite-mediated sexual selection.