949 resultados para low-temperature epitaxy
Resumo:
Hydrotalcite and thermally activated hydrotalcites were examined for their potential as methods for the removal of oxalate anions from Bayer Process liquors. Hydrotalcite was prepared and characterised by a number of methods, including X-ray diffraction, thermogravimetric analysis, nitrogen adsorption analysis and vibrational spectroscopy. Thermally activated hydrotalcites were prepared by a low temperature method and characterised using X-ray diffraction, nitrogen adsorption analysis and vibrational spectroscopy. Oxalate intercalated hydrotalcite was prepared by two methods and analysed with X-ray diffraction and for the first time thermogravimetric analysis, Raman spectroscopy and infrared emission spectroscopy. The adsorption of oxalate anions by hydrotalcite and thermally activated hydrotalcite was tested in a range of solutions using both batch and kinetic adsorption models.
Resumo:
From a mineralogical survey of approximately 30 chondritic micrometeorites collected from the lower stratosphere and studied in detail using current electron microscopy techniques, it is concluded that these particles represent a unique group of extraterrestrial materials. These micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class. Electron microscope investigations of chondritic micrometeorites have established that these materials (1) are extraterrestrial in origin, (2) existed in space as small objects, (3) endured minimal alteration by planetary processes since formation, and (4) can suffer minimal pulse heating (<600°C) on entering earth's atmosphere. The probable sources for chondritic interplanetary dust particles (IDPs) are cometary and asteroidal debris and, perhaps to a lesser extent, interstellar regions. These sources have not been conclusively linked to any specific mineralogical subset of IDP, although the chondritic porous (CP) aggregate is considered of likely cometary origin. Chondritic IDPs occur in two predominant mineral assemblages: (1) carbonaceous phases and phyllosilicates and (2) carbonaceous phases and nesosilicates or inosilicates, although particles with both types of silicate assemblages are observed. Olivines, pyroxenes, layer silicates, and carbon-rich phases are the most commonly occurring minerals in many chondritic IDPs. Other phases often observed in variable proportions include sulphides, spinels, metals, metal carbides, carbonates, and minor amounts of sulphates and phosphates. Individual mineral grain sizes range from micrometers (primarily pyroxenes and olivines) to nanometers, with the predominant size for all phases less than 100 nm. Specific mineral characteristics for particular chondritic IDPs provide an indication of processes which may have occurred prior to collection in the earth's stratosphere. For example, pyroxene mineralogy in some chondritic aggregates is consistent with condensation from a vapor phase and, we consider, with condensation in a turbulent solar nebula at relatively low temperatures (<1000°C). Carbonaceous phases present in other CP aggregates have been used to imply low-temperature formation processes such as Fischer-Tropsch synthesis (∼530°C) or carbonization and graphitization (∼315°C). Alteration processes have been implicated in the formation of some layer silicates in CP aggregates and may have involved hydrocryogenic alteration at <0°C. In general, interpretations of transformation processes on submicrometer-size minerals in chondritic IDPs are consistent with formation at a radius equivalent to the asteroid belt or greater during the later stages of solar nebula evolution using currently available models.
Resumo:
Interstellar gas abundances (Clayton et al., 1986) suggest that titanium may be bound up in dust and indeed, excess titanium in carbonaceous chondrites is attributed to mixing of interstellar and Solar System materials (Morton, 1974). Fine-grained chondritic interplanetary dust particles (lOPs) of cometary origin are relatively pristine early Solar System materials (Mackinnon and Rietmeijer, 1987; Rietmeijer, 1987) and show chemical and mineralogical signatures related to a pre-solar or nebular origin. For example, large OtH ratios suggest a presolar or interstellar dust component in some chondritic lOPs(Mackinnon and Rietmeijer, 1987). Ti/Si ratios (normalized to bulk CI) in lOPs and carbonaceous chondrite matrices exceed solar abundances but are similar to dust from comet Halley (Jessberger et al., 1987). The Ti-distribution in chondritic lOPs shows major, small-scale « 0.1 urn) variations (Flynn et al., 1978) consistent with heterogeneously distributed Ti-bearingphases. Analytical electron microscope (AEM) studies, in fact, have identified platey grains of Ti-metal, Ti407 and Ti s09 in two different lOPs (Mackinnon and Rietmeijer, 1987). The occurrence of Ti407 was related in situ low-temperature aqueous alteration and therefore implied the presence of BaTi03 (Rietmeijer and Mackinnon, 1984). Yet, the presence ofTis09 in an lOp which shows no evidence of aqueous alteration (Rietmeijer.and McKay, 1986) requires a different interpretation. The distribution of Ti-oxides in chondritic lOPs were investigated with ultra-microtomed thin sections of fluffy chondri tic lOP U2011*B (lSC allocation U2011C2) using a lEOL 2000FX AEM operating at an accelerating voltage of 200kV and with an attached Tracor Northern TN5500 energy dispersive spectrometer.
Resumo:
The presence of carbon in primitive extraterrestrial materials has long been considered a useful indicator of prevailing geochemical conditions early in the formation of the Solar System. A recent addition to the suite of primitive materials available for study by cosmochemists includes particles collected from the stratosphere called chondritic porous (CP) aggregates1. Carbon-rich CP aggregates are less abundant in stratospheric collections and contain many low-temperature phases (such as layer silicates) as minor components2,3. We describe here the nature of the most abundant carbon phase in a carbon-rich CP aggregate (sample no. W7029* A) collected from the stratosphere as part of the Johnson Space Center (JSC) Cosmic Dust Program4. By comparison with experimental and terrestrial studies of poorly graphitized carbon (PGC), we show that the graphitization temperature, or the degree of ordering in the PGC, may provide a useful cosmothermometer for primitive extraterrestrial materials.