969 resultados para low-level jets
Resumo:
This paper describes the dataset and vision challenges that form part of the PETS 2014 workshop. The datasets are multisensor sequences containing different activities around a parked vehicle in a parking lot. The dataset scenarios were filmed from multiple cameras mounted on the vehicle itself and involve multiple actors. In PETS2014 workshop, 22 acted scenarios are provided of abnormal behaviour around the parked vehicle. The aim in PETS 2014 is to provide a standard benchmark that indicates how detection, tracking, abnormality and behaviour analysis systems perform against a common database. The dataset specifically addresses several vision challenges corresponding to different steps in a video understanding system: Low-Level Video Analysis (object detection and tracking), Mid-Level Video Analysis (‘simple’ event detection: the behaviour recognition of a single actor) and High-Level Video Analysis (‘complex’ event detection: the behaviour and interaction recognition of several actors).
Resumo:
Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.
Resumo:
A strong body of work has explored the interaction between visual perception and language comprehension; for example, recent studies exploring predictions from embodied cognition have focused particularly on the common representation of sensory—motor and semantic information. Motivated by this background, we provide a set of norms for the axis and direction of motion implied in 299 English verbs, collected from approximately 100 native speakers of British English. Until now, there have been no freely available norms of this kind for a large set of verbs that can be used in any area of language research investigating the semantic representation of motion. We have used these norms to investigate the interaction between language comprehension and low-level visual processes involved in motion perception, validating the norming procedure’s ability to capture the motion content of individual verbs. Supplemental materials for this study may be downloaded from brm.psychonomic-journals.org/content/supplemental.
Resumo:
The interaction between polynyas and the atmospheric boundary layer is examined in the Laptev Sea using the regional, non-hydrostatic Consortium for Small-scale Modelling (COSMO) atmosphere model. A thermodynamic sea-ice model is used to consider the response of sea-ice surface temperature to idealized atmospheric forcing. The idealized regimes represent atmospheric conditions that are typical for the Laptev Sea region. Cold wintertime conditions are investigated with sea-ice–ocean temperature differences of up to 40 K. The Laptev Sea flaw polynyas strongly modify the atmospheric boundary layer. Convectively mixed layers reach heights of up to 1200 m above the polynyas with temperature anomalies of more than 5 K. Horizontal transport of heat expands to areas more than 500 km downstream of the polynyas. Strong wind regimes lead to a more shallow mixed layer with strong near-surface modifications, while weaker wind regimes show a deeper, well-mixed convective boundary layer. Shallow mesoscale circulations occur in the vicinity of ice-free and thin-ice covered polynyas. They are forced by large turbulent and radiative heat fluxes from the surface of up to 789 W m−2, strong low-level thermally induced convergence and cold air flow from the orographic structure of the Taimyr Peninsula in the western Laptev Sea region. Based on the surface energy balance we derive potential sea-ice production rates between 8 and 25 cm d−1. These production rates are mainly determined by whether the polynyas are ice-free or covered by thin ice and by the wind strength.
Resumo:
A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (Ttot). The way Ttot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in Ttot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to Ttot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of Ttot between the two schemes appears to play an important role at all time scales.
Resumo:
Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancies
Resumo:
Given capacity limits, only a subset of stimuli 1 give rise to a conscious percept. Neurocognitive models suggest that humans have evolved mechanisms that operate without awareness and prioritize threatening stimuli over neutral stimuli in subsequent perception. In this meta analysis, we review evidence for this ‘standard hypothesis’ emanating from three widely used, but rather different experimental paradigms that have been used to manipulate awareness. We found a small pooled threat-bias effect in the masked visual probe paradigm, a medium effect in the binocular rivalry paradigm and highly inconsistent effects in the breaking continuous flash suppression paradigm. Substantial heterogeneity was explained by the stimulus type: the only threat stimuli that were robustly prioritized across all three paradigms were fearful faces. Meta regression revealed that anxiety may modulate threat biases, but only under specific presentation conditions. We also found that insufficiently rigorous awareness measures, inadequate control of response biases and low level confounds may undermine claims of genuine unconscious threat processing. Considering the data together, we suggest that uncritical acceptance of the standard hypothesis is premature: current behavioral evidence for threat-sensitive visual processing that operates without awareness is weak.
Resumo:
The challenge of moving past the classic Window Icons Menus Pointer (WIMP) interface, i.e. by turning it ‘3D’, has resulted in much research and development. To evaluate the impact of 3D on the ‘finding a target picture in a folder’ task, we built a 3D WIMP interface that allowed the systematic manipulation of visual depth, visual aides, semantic category distribution of targets versus non-targets; and the detailed measurement of lower-level stimuli features. Across two separate experiments, one large sample web-based experiment, to understand associations, and one controlled lab environment, using eye tracking to understand user focus, we investigated how visual depth, use of visual aides, use of semantic categories, and lower-level stimuli features (i.e. contrast, colour and luminance) impact how successfully participants are able to search for, and detect, the target image. Moreover in the lab-based experiment, we captured pupillometry measurements to allow consideration of the influence of increasing cognitive load as a result of either an increasing number of items on the screen, or due to the inclusion of visual depth. Our findings showed that increasing the visible layers of depth, and inclusion of converging lines, did not impact target detection times, errors, or failure rates. Low-level features, including colour, luminance, and number of edges, did correlate with differences in target detection times, errors, and failure rates. Our results also revealed that semantic sorting algorithms significantly decreased target detection times. Increased semantic contrasts between a target and its neighbours correlated with an increase in detection errors. Finally, pupillometric data did not provide evidence of any correlation between the number of visible layers of depth and pupil size, however, using structural equation modelling, we demonstrated that cognitive load does influence detection failure rates when there is luminance contrasts between the target and its surrounding neighbours. Results suggest that WIMP interaction designers should consider stimulus-driven factors, which were shown to influence the efficiency with which a target icon can be found in a 3D WIMP interface.
Resumo:
P>Vegetable oils can be extracted using ethanol as solvent. The main goal of this work was to evaluate the ethanol performance on the extraction process of rice bran oil. The influence of process variables, solvent hydration and temperature was evaluated using the response surface methodology, aiming to maximise the soluble substances and gamma-oryzanol transfer and minimise the free fatty acids extraction and the liquid content in the underflow solid. It can be noted that oil solubility in ethanol was highly affected by the water content. The free fatty acids extraction is improved by increasing the moisture content in the solvent. Regarding the gamma-oryzanol, it can be observed that its extraction is affected by temperature when low level of water is added to ethanol. On the other hand, the influence of temperature is minimised with high levels of water in the ethanol.
Resumo:
Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5A degrees N-15A degrees S band, both in summer and especially in winter, reaching up to 6-8A degrees C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4A degrees C and in winter between 3 and 5A degrees C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of model runs for some regions, as the Northwest coast of Peru-Ecuador, northern Argentina, Eastern Amazonia and Northeast Brazil, whereas for other regions they are less robust as in Pantanal region of West Central and southeastern Brazil.
Resumo:
Numerical experiments with the Brazilian additions to the Regional Atmospheric Modeling System were performed with two nested grids (50 and 10 km horizontal resolution, respectively) with and without the effect of biomass burning for 8 different situations for 96 h integrations. Only the direct radiative effect of aerosols is considered. The results were analyzed in large areas encompassing the BR163 road (one of the main areas of deforestation in the Amazon). mainly where most of the burning takes place. The precipitation change due to the direct radiative impact of biomass burning is generally negative (i.e., there is a decrease of precipitation). However, there are a few cases with a positive impact. Two opposite forcing mechanisms were explored: (a) the thermodynamic forcing that is generally negative in the sense that the aerosol tends to stabilize the lower atmosphere and (b) the dynamic impact associated with the low level horizontal pressure gradients produced by the aerosol plumes. In order to understand the non-linear relationship between the two effects, experiments were performed with 4-fold emissions. In these cases, the dynamic effect overcomes the stabilization produced by the radiative forcing and precipitation increase is observed in comparison with the control experiment. This study suggests that. in general, the biomass burning radiative forcing decreases the precipitation. However, very large concentrations of aerosols may lead to an increase of precipitation due to the dynamical forcing associated with the horizontal pressure gradients. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Regional Climate Model version 3 (RegCM3) simulations of 17 summers (1988-2004) over part of South America south of 5 degrees S were evaluated to identify model systematic errors. Model results were compared to different rainfall data sets (Climate Research Unit (CRU), Climate Prediction Center (CPC), Global Precipitation Climatology Project (GPCP), and National Centers for Environmental Prediction (NCEP) reanalysis), including the five summers mean (1998-2002) precipitation diurnal cycle observed by the Tropical Rainfall Measuring Mission (TRMM)-Precipitation Radar (PR). In spite of regional differences, the RegCM3 simulates the main observed aspects of summer climatology associated with the precipitation (northwest-southeast band of South Atlantic Convergence Zone (SACZ)) and air temperature (warmer air in the central part of the continent and colder in eastern Brazil and the Andes Mountains). At a regional scale, the main RegCM3 failures are the underestimation of the precipitation in the northern branch of the SACZ and some unrealistic intense precipitation around the Andes Mountains. However, the RegCM3 seasonal precipitation is closer to the fine-scale analyses (CPC, CRU, and TRMM-PR) than is the NCEP reanalysis, which presents an incorrect north-south orientation of SACZ and an overestimation of its intensity. The precipitation diurnal cycle observed by TRMM-PR shows pronounced contrasts between Tropics and Extratropics and land and ocean, where most of these features are simulated by RegCM3. The major similarities between the simulation and observation, especially the diurnal cycle phase, are found over the continental tropical and subtropical SACZ regions, which present afternoon maximum (1500-1800 UTC) and morning minimum (0900-1200 UTC). More specifically, over the core of SACZ, the phase and amplitude of the simulated precipitation diurnal cycle are very close to the TRMM-PR observations. Although there are amplitude differences, the RegCM3 simulates the observed nighttime rainfall in the eastern Andes Mountains, over the Atlantic Ocean, and also over northern Argentina. The main simulation deficiencies are found in the Atlantic Ocean and near the Andes Mountains. Over the Atlantic Ocean the convective scheme is not triggered; thus the rainfall arises from the grid-scale scheme and therefore differs from the TRMM-PR. Near the Andes, intense (nighttime and daytime) simulated precipitation could be a response of an incorrect circulation and topographic uplift. Finally, it is important to note that unlike most reported bias of global models, RegCM3 does not trigger the moist convection just after sunrise over the southern part of the Amazon.
Resumo:
This work presents an analysis of a lowermost stratospheric air intrusion event over the coast of Brazil, which may have been responsible for a secondary surface cyclogenesis over the southwestern Atlantic Ocean. The surface cyclone initiated at 0600 UTC 17 April 1999 in a cold air mass in the rear of a cold front after a primary cyclone developed over the same region. The analysis of the secondary cyclone revealed the presence of lowermost stratospheric air intrusion characterized by anomalous potential vorticity (PV), dry air, and high concentration of ozone in atmospheric column. The system developed on the eastern side of an upper level core of PV anomaly, which induced a cyclonic wind circulation at lower levels and favored the onset of the secondary cyclone. In midlevels (500 hPa), the cutoff low development contributed to reduce the propagation speed of the wave pattern. This feature seemed to (1) allow the low-level cold/dry air to heat/moisten associated with sensible and latent fluxes transferred from the ocean to the atmosphere, which intensified a baroclinic zone parallel to the coast, and (2) contribute to the long duration of the system. The present analysis indicates that this secondary cyclone development could be the result of the coupling between the PV anomaly in the upper levels and low-level air-sea interaction.
Resumo:
Intraseasonal and interannual variability of extreme wet and dry anomalies over southeastern Brazil and the western subtropical South Atlantic Ocean are investigated. Precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) in pentads during 23 austral summers (December-February 1979/80-2001/02). Extreme wet (dry) events are defined according to 75th (25th) percentiles of precipitation anomaly distributions observed in two time scales: intraseasonal and interannual. The agreement between the 25th and 75th percentiles of the GPCP precipitation and gridded precipitation obtained from stations in Brazil is also examined. Variations of extreme wet and dry anomalies on interannual time scales are investigated along with variations of sea surface temperature (SST) and circulation anomalies. The South Atlantic SST dipole seems related to interannual variations of extreme precipitation events over southeastern Brazil. It is shown that extreme wet and dry events in the continental portion of the South Atlantic convergence zone (SACZ) are decoupled from extremes over the oceanic portion of the SACZ and there is no coherent dipole of extreme precipitation regimes between tropics and subtropics on interannual time scales. On intraseasonal time scales, the occurrence of extreme dry and wet events depends on the propagation phase of extratropical wave trains and consequent intensification (weakening) of 200-hPa zonal winds. Extreme wet and dry events over southeastern Brazil and subtropical Atlantic are in phase on intraseasonal time scales. Extreme wet events over southeastern Brazil and subtropical Atlantic are observed in association with low-level northerly winds above the 75th percentile of the seasonal climatology over central-eastern South America. Extreme wet events on intraseasonal time scales over southeastern Brazil are more frequent during seasons not classified as extreme wet or dry on interannual time scales.
Resumo:
Convectively coupled Kelvin waves over the South American continent are examined through the use of temporal and spatial filtering of reanalysis, satellite, and gridded rainfall data. They are most prominent from November to April, the season analyzed herein. The following two types of events are isolated: those that result from preexisting Kelvin waves over the eastern Pacific Ocean propagating into the continent, and those that apparently originate over Amazonia, forced by disturbances propagating equatorward from central and southern South America. The events with precursors in the Pacific are mainly upper-level disturbances, with almost no signal at the surface. Those events with precursors over South America, on the other hand, originate as upper-level synoptic wave trains that pass over the continent and resemble the ""cold surges`` documented by Garreaud and Wallace. As the wave train propagates over the Andes, it induces a southerly low-level wind that advects cold air to the north. Precipitation associated with a cold front reaches the equator a few days later and subsequently propagates eastward with the characteristics of a Kelvin wave. The structures of those waves originating over the Pacific are quite similar to those originating over South America as they propagate to eastern South America and into the Atlantic. South America Kelvin waves that originate over neither the Pacific nor the midlatitudes of South America can also be identified. In a composite sense, these form over the eastern slope of the Andes Mountains, close to the equator. There are also cases of cold surges that reach the equator yet do not form Kelvin waves. The interannual variability of the Pacific-originating events is related to sea surface temperatures in the central-eastern Pacific Ocean. When equatorial oceanic conditions are warm, there tends to be an increase in the number of disturbances that reach South America from the Pacific.