975 resultados para low energy building


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The leading-twist valence-quark distribution function in the pion is obtained at a low normalization scale of an order of the inverse average size of an instanton pc. The momentum dependent quark mass and the quark-pion vertex are constructed in the framework of the instanton liquid model, using a gauge invariant approach. The parameters of instanton vacuum, the effective instanton radius and quark mass, are related to the vacuum expectation values of the lowest dimension quark-gluon operators and to the pion low energy observables. An analytic expression for the quark distribution function in the pion for a general vertex function is derived. The results are QCD evolved to higher momentum-transfer values, and reasonable agreement with phenomenological analyses of the data on parton distributions for the pion is found. ©2000 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone leading-twist quark operators are considered. These functions are calculated within the proposed relativistic quark model allowing for the nontrivial structure of the QCD vacuum, special attention being given to gauge invariance. Hadrons are treated as bound states of quarks; strong-interaction quark-pion vertices are described by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the quark-gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK Nauka/Interperiodica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The leading-twist pion-distribution amplitude is obtained at a low normalization scale of order ρc (inverse average size of an instanton). Pion dynamics, consistent with gauge invariance and low-energy theorems, is considered within the instanton vacuum model. The results are QCD-evolved to higher momentum-transfer values and are in agreement with recent data from CLEO on the pion transition form factor. It is also shown that some previous calculations violate the axial Ward-Takahashi identity. © 2001 MAIK Nauka/Interperiodica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use the CP trajectory diagram as a tool for pictorial representation of the genuine CP and the matter effects to explore the possibility of an in situ simultaneous measurement of δ and the sign of Δℳ13 2. We end up with a low-energy conventional superbeam experiment with a megaton-class water Cherenkov detector and baseline length of about 700 km. A picturesque description of the combined ambiguity which may arise in simultaneous determination of θ13 and the above two quantities is given in terms of CP trajectory diagram.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Classical BRST invariance in the pure spinor formalism for the open superstring is shown to imply the supersymmetric Born-Infeld equations of motion for the background fields. These equations are obtained by requiring that the left and right-moving BRST currents are equal on the worldsheet boundary in the presence of the background. The Born-Infeld equations are expressed in N = 1 D = 10 superspace and include all abelian contributions to the low-energy equations of motion, as well as the leading non-abelian contributions. © SISSA/ISAS 2003.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For light exotic nuclei modeled as two neutrons n and a core A, we report results for the two-neutron correlation functions and also for the mean-square radii, considering a universal scaling function. The results of our calculations for the neutron-neutron correlation functions are qualitatively consistent with recent data obtained for 11Li and 14Be nuclei. The root-mean-square distance in the halo of such nuclei are also consistent with data, which means that the neutrons of the halo have a large probability to be found outside the interaction range. Therefore the low-energy properties of these halo neutrons are, to a large extend, model independent as long as few physical input scales are fixed. The model is restricted to s-wave subsystems, with small energies for the bound or virtual states. For the radii we are also shown results for the 6He and 20C. All the interaction effects, as higher partial wave in the interaction and/or Pauli blocking effect are, to some extend, included in our model, as long as the three-body binding energy is supplied. © 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chaotic low energy region (chaotic sea) of the Fermi-Ulam accelerator model is discussed within a scaling framework near the integrable to non-integrable transition. Scaling results for the average quantities (velocity, roughness, energy etc.) of the simplified version of the model are reviewed and it is shown that, for small oscillation amplitude of the moving wall, they can be described by scaling functions with the same characteristic exponents. New numerical results for the complete model are presented. The chaotic sea is also characterized by its Lyapunov exponents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A methodology for analyzing the solar access and its influence on both air temperature and thermal comfort of the urban environment was here developed by applying the potentiality of GIS tools. Urban canyons in a specific area of a Brazilian medium sized city were studied. First, a computational algorithm was applied in order to allow the determination of sky view factors (SVF) and sun-paths in urban canyons. Then, air temperatures in 40 measurement points were collected within the study area. Solar radiation values of these canyons were determined and subsequently stored in a GIS database. The creation of thermal maps for the whole neighbourhood was possible due to a statistical treatment of the data, by promoting the interpolation of values. All data could then be spatially cross-examined. In addition, thermal comfort maps for summer and winter periods were generated. The methodology allowed the identification of thermal tendencies within the neighbourhood, what can be useful in the conception of guidelines for urban planning purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The short-distance part of the low energy interaction of D-mesons and nucleons is investigated in the context of a quark model. The quark model is based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The basic mechanism for the short-distance interaction between the D-mesons and nucleons is quark interchange. Using Resonating GroupMethod techniques an effective potential for the interaction between nucleons and D mesons can be obtained and used in a Lippmann-Schwinger equation to obtain differential cross-sections and phase shifts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Swing-by techniques are extensively used in interplanetary missions to minimize fuel consumption and to raise payloads of spaceships. The effectiveness of this type of maneuver has been proven since the beginning of space exploration. According to this premise, we have explored the existence of a natural and direct links between low Earth orbits and the lunar sphere of influence, to obtain low-energy interplanetary trajectories through swing-bys with the Moon and the Earth. The existence of these links are related to a family of retrograde periodic orbits around the Lagrangian equilibrium point L1 predicted for the circular, planar, restricted three-body Earth-Moon-particle problem. The trajectories in these links are sensitive to small disturbances. This enables them to be conveniently diverted reducing so the cost of the swing-by maneuver. These maneuvers allow us a gain in energy sufficient for the trajectories to escape from the Earth-Moon system and to stabilize in heliocentric orbits between the Earth and Venus or Earth and Mars. On the other hand, still within the Earth sphere of influence, and taking advantage of the sensitivity of the trajectories, is possible to design other swing-bys with the Earth or Moon. This allows the trajectories to have larger reach, until they can reach the orbit of other planets as Venus and Mars.(3σ)Broucke, R.A., Periodic Orbits in the Restricted Three-Body Problem with Earth-Moon Masses, JPL Technical Report 32-1168, 1968.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. Moreover, the spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through aluminum absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadrontherapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code, or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development. © 2011 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the effect that the temperature dependence of the crystal structure of a two-dimensional organic charge-transfer salt has on the low-energy Hamiltonian representation of the electronic structure. For that, we determine the crystal structure of κ-(BEDT-TTF) 2Cu 2(CN) 3 for a series of temperatures between T=5 and 300 K by single crystal X-ray diffraction and analyze the evolution of the electronic structure with temperature by using density functional theory and tight binding methods. We find a considerable temperature dependence of the corresponding triangular lattice Hubbard Hamiltonian parameters. We conclude that even in the absence of a change of symmetry, the temperature dependence of quantities like frustration and interaction strength can be significant and should be taken into account. © 2012 American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physical and chemical adsorption of CO 2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO 2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO 2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO 2 on the ZnO(0001) surface show that the p orbitals of CO 2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band. [Figure not available: see fulltext.] © 2012 Springer-Verlag Berlin Heidelberg.