981 resultados para lattice
Resumo:
Statistically averaged lattices provide a common basis to understand the diffraction properties of structures displaying deviations from regular crystal structures. An average lattice is defined and examples are given in one and two dimensions along with their diffraction patterns. The absence of periodicity in reciprocal space corresponding to aperiodic structures is shown to arise out of different projected spacings that are irrationally related, when the grid points are projected along the chosen coordinate axes. It is shown that the projected length scales are important factors which determine the existence or absence of observable periodicity in the diffraction pattern more than the sequence of arrangement.
Resumo:
The shear alignment of an initially disordered lamellar phase is examined using lattice Boltzmann simulations of a mesoscopic model based on a free-energy functional for the concentration modulation. For a small shear cell of width 8 lambda, the qualitative features of the alignment process are strongly dependent on the Schmidt number Sc = nu/D (ratio of kinematic viscosity and mass diffusion coefficient). Here, lambda is the wavelength of the concentration modulation. At low Schmidt number, it is found that there is a significant initial increase in the viscosity, coinciding with the alignment of layers along the extensional axis, followed by a decrease at long times due to the alignment along the flow direction. At high Schmidt number, alignment takes place due to the breakage and reformation of layers because diffusion is slow compared to shear deformation; this results in faster alignment. The system size has a strong effect on the alignment process; perfect alignment takes place for a small systems of width 8 lambda and 16 lambda, while a larger system of width 32 lambda does not align completely even at long times. In the larger system, there appears to be a dynamical steady state in which the layers are not perfectly aligned-where there is a balance between the annealing of defects due to shear and the creation due to an instability of the aligned lamellar phase under shear. We observe two types of defect creation mechanisms: the buckling instability under dilation, which was reported earlier, as well as a second mechanism due to layer compression.
Resumo:
Gd2O3:Eu3+ (4 mol%) nanophosphor co-doped with Li+ ions have been synthesized by low-temperature solution combustion technique in a short time. Powder X-ray diffractometer (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV-VIS and photoluminescence (PL) techniques have been employed to characterize the synthesized nanoparticles. It is found that the lattice of Gd2O3:Eu3+ phosphor transforms from monoclinic to cubic as the Li+-ions are doped. Upon 254 nm excitation, the phosphor showed characteristic luminescence D-5(0) -> F-7(J) (J= 0-4) of the Eu3+ ions. The electronic transition located at 626 nm (D-5(0) -> F-7(2)) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (D-5(0) -> F-7(1)). Furthermore, the effects of the Li+ co-doping as well as calcinations temperature on the PL properties have been studied. The results show that incorporation of Li+ ions in Gd2O3:Eu3+ lattice could induce a remarkable improvement of their PL intensity. The emission intensity was observed to be enhanced four times than that of with out Li+-doped Gd2O3:Eu3+. (C) 2010 Elsevier B.V. All rights reserved,
Resumo:
In this article, we use some spectral properties of polynomials presented in 1] and map an auto-correlation sequence to a set of Line Spectral Frequencies(LSFs) and reflection coefficients. This novel characterization of an auto-correlation sequence is used to obtain a lattice structure of a Linear-Phase(LP) FIR filter.
Resumo:
Bixbyite type Y2O3:Eu3+ apart from being the efficient red phosphor extensively used in trichromatic fluorescent lamps, it is a typical system one can apply Jorgensen's refined electron spin pairing theory. This can be used to explain the enhancement in Eu3+ emission intensity observed with the aliovalent substitution in the yttria host matrix. Results based on these are explained qualitatively by considering a simple configurational coordinate model. Futhermore, an insight into the different types of defects induced with the aliovalent substitution in the yttria lattice has become possible with EPR probe.
Resumo:
Stable and highly reproducible voltage-limiting characteristics have been observed at room temperature for polycrystalline ceramics prepared from donor-doped BaTiO3 solid solutions containing isovalent lattice substitute ions that lower the Curie point Tc. When the ambient temperature Ta is decreased such that Ta < Tc, the same ceramics show current-limiting behaviour. The leakage current, the breakdown voltage and the non-linear coefficient (α = 30−50) could be varied with grain-boundary layer (GBL) modifiers and postsintering annealing. The magnitude of the abnormally high dielectric constant (epsilon (Porson)r greater than, approximately 105) indicates the prevalence of GBL capacitance in these ceramics. Analyses of the current-voltage relations show that GBL conduction at Ta < Tc corresponds to tunnelling across asymmetric barriers formed under steady state Joule heating. At Ta > Tc, trap-related conduction gives way to tunnelling across symmetric barriers as the field strength increases.
Resumo:
An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed.
Resumo:
Attempts to prepare hydrogen-bond-directed nonlinear optical materials from a 1:1 molar mixture Of D-(+)-dibenzoyltartaric acid (DBT, I) and 4-aminopyridine (4-AP, II) resulted in two salts of different stoichiometry. One of them crystallizes in an unusual 1.5:1 (acid:base) monohydrate salt form III while the other one crystallizes as 1:1 (acid:base) salt IV. Crystal structures of both of the salts were determined from single-crystal X-ray diffraction data. The salt III crystallizes in a monoclinic space group C2 with a = 30.339(l), b = 7.881(2), c = 14.355(1) angstrom, beta = 97.48(1)degrees, V = 3403.1(9) angstrom3, Z = 4, R(w) = 0.058, R(w)= 0.058. The salt IV also crystallizes in a monoclinic space group P2(1) with a = 7.500(1), b = 14.968(2), c = 10.370(1) angstrom, beta = 102.67(1)degrees, V = 1135.9(2) angstrom3, Z = 2, R = 0.043, R(w) = 0.043. Interestingly, two DBT molecules with distinctly different conformation are present in the same crystal lattice of salt III. Extensive hydrogen-bonding interactions are found in both of the salts, and both of them show SHG intensity 1.4-1.6 times that of urea.
Resumo:
An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed.
Resumo:
We study the electronic structure of NaCuO2 by analysing experimental core level photoemission and X-ray absorption spectra using a cluster as well as an Anderson impurity Hamiltonian including the band structure of the oxygen sublattice. We show that the X-ray absorption results unambiguously establish a negative value of the charge transfer energy, A. Further, mean-field calculations for the edge-shared one-dimensional CuO2 lattice of NaCuO2 within the multiband Hubbard Hamiltonian show that the origin of the insulating nature lies in the band structure rather than in the correlation effects. LMTO-ASA band structure calculations suggest that NaCuO2 is an insulator with a gap of around 1 eV.
Resumo:
We present results for one-loop matching coefficients between continuum four-fermion operators, defined in the Naive Dimensional Regularization scheme, and staggered fermion operators of various types. We calculate diagrams involving gluon exchange between quark fines, and ''penguin'' diagrams containing quark loops. For the former we use Landau-gauge operators, with and without O(a) improvement, and including the tadpole improvement suggested by Lepage and Mackenzie. For the latter we use gauge-invariant operators. Combined with existing results for two-loop anomalous dimension matrices and one-loop matching coefficients, our results allow a lattice calculation of the amplitudes for KKBAR mixing and K --> pipi decays with all corrections of O(g2) included. We also discuss the mixing of DELTAS = 1 operators with lower dimension operators, and show that, with staggered fermions, only a single lower dimension operator need be removed by non-perturbative subtraction.
Resumo:
An important yet unsolved problem in the field of orientational relaxation in dipolar liquids is the dependence of the correlation functions C(l)(t), C(l)(t) = [4pi/(2l + 1)SIGMA(m = -l)l [Y(lm)(OMEGA(0)Y(lm)(OMEGA(t))] on the rank l (where Y(lm)(OMEGA) are the usual spherical harmonics). The existing theories on this effect differ in their predictions. To investigate this, we have carried out extensive computer simulations of a Brownian dipolar lattice. The dielectric friction was found to decrease rapidly with increasing l, in qualitative agreement with the predictions of Hubbard-Wolynes. However, the observed effect is much stronger than the predictions of the existing theories.
Resumo:
Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces >= 90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.
Resumo:
We investigate the structural, magnetic, and specific heat behavior of the hexagonal manganite Dy0.5Y0.5MnO3 in order to understand the effect of dilution of Dy magnetism with nonmagnetic yttrium. In this compound, the triangular Mn lattice orders antiferromagnetic at T-N(Mn) approximate to 68 K observed experimentally in the derivative of magnetic susceptibility as well as in specific heat. In addition, a low-temperature peak at T-N(Dy) similar to 3 K is observed in specific heat which is attributed to rare earth order. The T-N(Mn) increases by 9 K compared to that of hexagonal (h) DyMnO3 while T-N(Dy) is unchanged. A change in slope of thermal evolution of lattice parameters is observed to occur at temperature close to T-N(Mn). This hints at strong magnetoelastic coupling in this geometric multiferroic. In magnetization measurements, steplike features are observed when the magnetic field is applied along the c axis which shift to higher fields with temperature and vanish completely above 40 K. The presence of different magnetic phases at low temperature and strong magnetoelastic effects can lead to such field-induced transitions which resemble metamagnetic transitions. This indicates the possibility of strong field-induced effects in dielectric properties of this material, which is unexplored to date.
Resumo:
Grain boundary sliding during high temperature deformation can lead to stress concentrations and an enhancement of diffusion in mobile boundaries. Experiments were conducted on a fine grained 3 mol% yttria stabilized tetragonal zirconia, under conditions associated with superplastic flow involving grain boundary sliding. Tracer diffusion studies under creep conditions and without load indicate that there is no enhancement in either the lattice or grain boundary diffusivities. The experimental creep data are consistent with an interface controlled diffusion creep mechanism. (C) 2011 Elsevier Ltd. All rights reserved.