991 resultados para laser efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest inventories are used to estimate forest characteristics and the condition of forest for many different applications: operational tree logging for forest industry, forest health state estimation, carbon balance estimation, land-cover and land use analysis in order to avoid forest degradation etc. Recent inventory methods are strongly based on remote sensing data combined with field sample measurements, which are used to define estimates covering the whole area of interest. Remote sensing data from satellites, aerial photographs or aerial laser scannings are used, depending on the scale of inventory. To be applicable in operational use, forest inventory methods need to be easily adjusted to local conditions of the study area at hand. All the data handling and parameter tuning should be objective and automated as much as possible. The methods also need to be robust when applied to different forest types. Since there generally are no extensive direct physical models connecting the remote sensing data from different sources to the forest parameters that are estimated, mathematical estimation models are of "black-box" type, connecting the independent auxiliary data to dependent response data with linear or nonlinear arbitrary models. To avoid redundant complexity and over-fitting of the model, which is based on up to hundreds of possibly collinear variables extracted from the auxiliary data, variable selection is needed. To connect the auxiliary data to the inventory parameters that are estimated, field work must be performed. In larger study areas with dense forests, field work is expensive, and should therefore be minimized. To get cost-efficient inventories, field work could partly be replaced with information from formerly measured sites, databases. The work in this thesis is devoted to the development of automated, adaptive computation methods for aerial forest inventory. The mathematical model parameter definition steps are automated, and the cost-efficiency is improved by setting up a procedure that utilizes databases in the estimation of new area characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were carried out in a growth chamber to evaluate the effect of spreader and uredospore concentrations on the efficiency of infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust. CD 214 RR soybean cultivar was inoculated with the following polyoxyethylene sorbitane monolaurate concentrations: 0, 30, 60, 120, 240, 480 and 960 µL.L-1 water, as well as a fixed uredospore concentration of 2 x 10(4) spores.mL-1. In a second phase, the inoculum concentrations of 0, 5 x 10³, 1 x 10(4), 2 x 10(4), 4 x 10(4), 8 x 10(4) and 16 x 10(4) uredospores.mL-1 were evaluated, and the spreader concentration of 240 µL.L-1, selected in the previous experiment, was fixed. The spreader concentration of 240 µL.L-1 can be used in artificial inoculation studies, as well as up to 4 x 10(4) uredospores.mL-1. In this work, there was a correlation between uredia and lesion density. Thus, the use of lesion density is recommended to assess disease intensity for its accuracy and less time consuming. There was also a positive correlation between uredia and lesion density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Techniques that result in increased pathogen infection rates by employing reduced quantities of fungal spores with sparse sporulation have been developed. Experiments under controlled environment conditions were conducted to evaluate the effect of the density of Bipolaris sorokiniana conidia on the intensity of wheat helminthosporiosis. Using a selected inoculum density, the concentration of the tensoactive (Tween 20) that promoted maximum infection by the causal agent of the disease was determined. The density of lesions and the estimated severity of the disease were quantified. The selected inoculum density was 1.5 x 10(4) spores.mL-1 plus 480 µL tensoactive.L-1 water, resulting in a disease severity that allows selecting wheat cultivars resistant to B. sorokiniana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify formulations of biological agents that enable survival, stability and a good surface distribution of the antagonistic agent, studies that test different application vehicles are necessary. The efficiency of two killer yeasts, Wickerhamomyces anomalus (strain 422) and Meyerozyma guilliermondii (strain 443), associated with five different application vehicles, was assessed for the protection of postharvest papayas. In this study, after 90 days of incubation at 4ºC, W. anomalus (strain 422) and M. guilliermondii (strain 443) were viable with all application vehicles tested. Fruits treated with different formulations (yeasts + application vehicles) had a decreased severity of disease (by at least 30%) compared with untreated fruits. The treatment with W. anomalus (strain 422) + 2% starch lowered disease occurrence by 48.3%. The most efficient treatments using M. guilliermondii (strain 443) were those with 2% gelatin or 2% liquid carnauba wax, both of which reduced anthracnose by 50% in postharvest papayas. Electron micrographs of the surface tissues of the treated fruits showed that all application vehicles provided excellent adhesion of the yeast to the surface. Formulations based on starch (2%), gelatin (2%) and carnauba wax (2%) were the most efficient at controlling fungal diseases in postharvest papayas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal industries producing thick sections have shown increasing interest in the laser–arc hybrid welding process because of its clear advantages compared with the individual processes of autogenous laser welding and arc welding. One major benefit of laser–arc hybrid welding is that joints with larger gaps can be welded with acceptable quality compared to autogenous laser welding. The laser-arc hybrid welding process has good potential to extend the field of applications of laser technology, and provide significant improvements in weld quality and process efficiency in manufacturing applications. The objective of this research is to present a parameter set-up for laser–arc hybrid welding processes, introduce a methodical comparison of the chosen parameters, and discuss how this technology may be adopted in industrial applications. The research describes the principles, means and applications of different types of laser–arc hybrid welding processes. Conducted experiment processing variables are presented and compared using an analytical model which can also be used for predictive simulations. The main argument in this thesis is that profound understanding of the advanced technology of laser-arc hybrid welding will help improve the productivity of welding in industrial applications. Based on a review of the current knowledge base, important areas for further research are also identified. This thesis consists of two parts. The first part introduces the research topic and discusses laser–arc hybrid welding by characterizing its mechanism and most important variables. The second part comprises four research papers elaborating on the performance of laser– arc hybrid welding in the joining of metals. The study uses quantitative and qualitative research methods which include in-depth, interpretive analyses of results from a number of research groups. In the interpretive analysis, the emphasis is placed on the relevance and usefulness of the investigative results drawn from other research publications. The results of this study contribute to research on laser–arc hybrid welding by increasing understanding of how old and new perspectives on laser–arc hybrid welding are evidenced in industry. The research methodology applied permits continued exploration of how laser–arc hybrid welding and various process factors influence the overall quality of the weld. Thestudy provides a good foundation for future research, creates improved awareness of the laser–arc hybrid welding process, and assists the metal industry to maximize welding productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of aluminium alloys are strongly influenced by the alloying elements and their concentration. In the case of aluminium alloy EN AW-6060 the main alloying elements are magnesium and silicon. The first goal of this thesis was to determine stability, repeatability and sensitivity as figures of merit of the in-situ melt identification technique. In this study the emissions from the laser welding process were monitored with a spectrometer. With the information produced by the spectrometer, quantitative analysis was conducted to determine the figures of merit. The quantitative analysis concentrated on magnesium and aluminium emissions and their relation. The results showed that the stability of absolute intensities was low, but the normalized magnesium emissions were quite stable. The repeatability of monitoring magnesium emissions was high (about 90 %). Sensitivity of the in-situ melt identification technique was also high. As small as 0.5 % change in magnesium content was detected by the spectrometer. The second goal of this study was to determine the loss of mass during deep penetration laser welding. The amount of magnesium in the material was measured before and after laser welding to determine the loss of magnesium. This study was conducted for aluminium alloy with nominal magnesium content of 0-10 % and for standard material EN AW-6060 that was welded with filler wire AlMg5. It was found that while the magnesium concentration in the material changed, the loss of magnesium remained fairly even. Also by feeding filler wire, the behaviour was similar. Thirdly, the reason why silicon had not been detected in the emission spectrum needed to be explained. Literature research showed that the amount of energy required for silicon to excite is considerably higher compared to magnesium. The energy input in the used welding process is insufficient to excite the silicon atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to verify Point-Centered Quarter Method (PCQM) accuracy and efficiency, using different numbers of individuals by per sampled area, in 28 quarter points in an Araucaria forest, southern Paraná, Brazil. Three variations of the PCQM were used for comparison associated to the number of sampled individual trees: standard PCQM (SD-PCQM), with four sampled individuals by point (one in each quarter), second measured (VAR1-PCQM), with eight sampled individuals by point (two in each quarter), and third measuring (VAR2-PCQM), with 16 sampled individuals by points (four in each quarter). Thirty-one species of trees were recorded by the SD-PCQM method, 48 by VAR1-PCQM and 60 by VAR2-PCQM. The level of exhaustiveness of the vegetation census and diversity index showed an increasing number of individuals considered by quadrant, indicating that VAR2-PCQM was the most accurate and efficient method when compared with VAR1-PCQM and SD-PCQM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for enhancing the energy efficiency of industrial pumping processes is estimated to be in some cases up to 50 %. One way to define further this potential is to implement techniques in accordance to definition of best available techniques in pumping applications. These techniques are divided into three main categories: Design, control method & maintenance and distribution system. In the theory part of this thesis first the definition of best available techniques (BAT) and its applicability on pumping processes is issued. Next, the theory around pumping with different pump types is handled, the main stress being in centrifugal pumps. Other components needed in a pumping process are dealt by presenting different control methods, use of an electric motor, variable speed drive and the distribution system. Last part of the theory is about industrial pumping processes from water distribution, sewage water and power plant applications, some of which are used further on in the empirical part as example cases. For the empirical part of this study four case studies on typical pumping processes from older Master’s these were selected. Firstly the original results were analyzed by studying the distribution of energy consumption between different system components and using the definition of BAT in pumping, possible ways to improve energy efficiency were evaluated. The goal in this study was that by the achieved results it would be possible to identify the characteristic energy consumption of these and similar pumping processes. Through this data it would then be easier to focus energy efficiency actions where they might be the most applicable, both technically and economically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is done as a part of project called FuncMama that is a project between Technical Research Centre of Finland (VTT), Oulu University (OY), Lappeenranta University of Technology (LUT) and Finnish industrial partners. Main goal of the project is to manufacture electric and mechanical components from mixed materials using laser sintering. Aim of this study was to create laser sintered pieces from ceramic material and monitor the sintering event by using spectrometer. Spectrometer is a device which is capable to record intensity of different wavelengths in relation with time. In this study the monitoring of laser sintering was captured with the equipment which consists of Ocean Optics spectrometer, optical fiber and optical lens (detector head). Light from the sintering process hit first to the lens system which guides the light in to the optical fibre. Optical fibre transmits the light from the sintering process to the spectrometer where wavelengths intensity level information is detected. The optical lens of the spectrometer was rigidly set and did not move along with the laser beam. Data which was collected with spectrometer from the laser sintering process was converted with Excel spreadsheet program for result’s evaluation. Laser equipment used was IPG Photonics pulse fibre laser. Laser parameters were kept mainly constant during experimental part and only sintering speed was changed. That way it was possible to find differences in the monitoring results without fear of too many parameters mixing together and affecting to the conclusions. Parts which were sintered had one layer and size of 5 x 5 mm. Material was CT2000 – tape manufactured by Heraeus which was later on post processed to powder. Monitoring of different sintering speeds was tested by using CT2000 reference powder. Moreover tests how different materials effect to the process monitoring were done by adding foreign powder Du Pont 951 which had suffered in re-grinding and which was more reactive than CT2000. By adding foreign material it simulates situation where two materials are accidently mixed together and it was studied if that can be seen with the spectrometer. It was concluded in this study that with the spectrometer it is possible to detect changes between different laser sintering speeds. When the sintering speed is lowered the intensity level of light is higher from the process. This is a result of higher temperature at the sintering spot and that can be noticed with the spectrometer. That indicates it could be possible to use spectrometer as a tool for process observation and support the idea of having system that can help setting up the process parameter window. Also important conclusion was how well the adding of foreign material could be seen with the spectrometer. When second material was added a significant intensity level raise could be noticed in that part where foreign material was mixed. That indicates it is possible to see if there are any variations in the material or if there are more materials mixed together. Spectrometric monitoring of laser sintering could be useful tool for process window observation and temperature controlling of the sintering process. For example if the process window for specific material is experimentally determined to get wanted properties and satisfying sintering speed. It is possible if the data is constantly recorded that the results can show faults in the part texture between layers. Changes between the monitoring data and the experimentally determined values can then indicate changes in the material being generated by material faults or by wrong process parameters. The results of this study show that spectrometer could be one possible tool for monitoring. But to get in that point where this all can be made possible much more researching is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately a quarter of electrical power consumption in pulp and paper industry is used in different pumping systems. Therefore, improving pumping system efficiency is a considerable way to reduce energy consumption in different processes. Pumping of wood pulp in different consistencies is common in pulp and paper industry. Earlier, centrifugal pumps were used to pump pulp only at low consistencies, but development of MC technology has made it possible to pump medium consistency pulp. Pulp is a non-Newtonian fluid, which flow characteristics are significantly different than what of water. In this thesis is examined the energy efficiency of pumping medium consistency pulp with centrifugal pump. The factors effecting the pumping of MC pulp are presented and through case study is examined the energy efficiency of pumping in practice. With data obtained from the case study are evaluated the effects of pump rotational speed and pulp consistency on energy efficiency. Additionally, losses caused by control valve and validity of affinity laws in pulp pumping are evaluated. The results of this study can be used for demonstrating the energy consumption of MC pumping processes and finding ways to improve energy efficiency in these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined solution business models and how they could be applied into energy efficiency business. The target of this study was to find out, what a functional solution business model applied to energy efficiency improvement projects is like. The term “functionality” was used to refer not only to the economic viability but to environmental and legal aspects and also to the implement of Critical Success Factors (CSFs) and the ability to overcome the most important market barriers and risks. This thesis is based on a comprehensive literature study on solution business, business models and energy efficiency business. This literature review was used as a foundation to an energy efficiency solution business model scheme. The created scheme was tested in a case study which studied two different energy efficiency improvement projects, illustrated the functionality of the created business model and evaluated their potential as customer targets. Solution approach was found to be suitable for energy efficiency business. The most important characteristics of a good solution business model were identified to be the relationship between the supplier and customer, a proper network, knowledge on the customer’s process and supreme technological expertise. Thus the energy efficiency solution business was recognized to be particularly suitable for example for energy suppliers or technological equipment suppliers. Because the case study was not executed from a certain company’s point of view, the most important factors such as relationships and the availability of funding could not be evaluated. Although the energy efficiency business is recognized to be economically viable, the most important factors influencing the profitability and the success of energy efficiency solution business model were identified to be the proper risk management, the ability to overcome market barriers and the realization of CSFs.