986 resultados para land restitution
Resumo:
We present an integrated palaeoecological and archaeobotanical study of pre-Columbian raised-field agriculture in the Llanos de Moxos, a vast seasonally inundated forest–savanna mosaic in the Bolivian Amazon. Phytoliths from excavated raised-field soil units, together with pollen and charcoal in sediment cores from two oxbow lakes, were analysed to provide a history of land use and agriculture at the El Cerro raised-field site. The construction of raised fields involved the removal of savanna trees, and gallery forest was cleared from the area by AD 310. Despite the low fertility of Llanos de Moxos soils, we determined that pre-Columbian raised-field agriculture sufficiently improved soil conditions for maize cultivation. Fire was used as a common management practice until AD 1300, at which point, the land-use strategy shifted towards less frequent burning of savannas and raised fields. Alongside a reduction in the use of fire, sweet potato cultivation and the exploitation of Inga fruits formed part of a mixed resource strategy from AD 1300 to 1450. The pre-Columbian impact on the landscape began to lessen around AD 1450, as shown by an increase in savanna trees and gallery forest. Although agriculture at the site began to decline prior to European arrival, the abandonment of raised fields was protracted, with evidence of sweet potato cultivation occurring as late as AD 1800.
Resumo:
Urban land surface models (LSM) are commonly evaluated for short periods (a few weeks to months) because of limited observational data. This makes it difficult to distinguish the impact of initial conditions on model performance or to consider the response of a model to a range of possible atmospheric conditions. Drawing on results from the first urban LSM comparison, these two issues are considered. Assessment shows that the initial soil moisture has a substantial impact on the performance. Models initialised with soils that are too dry are not able to adjust their surface sensible and latent heat fluxes to realistic values until there is sufficient rainfall. Models initialised with too wet soils are not able to restrict their evaporation appropriately for periods in excess of a year. This has implications for short term evaluation studies and implies the need for soil moisture measurements to improve data assimilation and model initialisation. In contrast, initial conditions influencing the thermal storage have a much shorter adjustment timescale compared to soil moisture. Most models partition too much of the radiative energy at the surface into the sensible heat flux at the probable expense of the net storage heat flux.
Resumo:
We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the observations falling within this tolerance when using Bayesian methods (maximum of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic thresholds in the tests employed by SADIST can significantly improve performance, applicable to cloud-test data to provided by the Sea and Land Surface Temperature Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014).
Resumo:
Virtually no information is available on the response of land-terminating Antarctic Peninsula glaciers to climate change on a centennial timescale. This paper analyses the topography, geomorphology and sedimentology of prominent moraines on James Ross Island, Antarctica, to determine geometric changes and to interpret glacier behaviour. The moraines are very likely due to a late-Holocene phase of advance and featured (1) shearing and thrusting within the snout, (2) shearing and deformation of basal sediment, (3) more supraglacial debris than at present and (4) short distances of sediment transport. Retreat of ∼100 m and thinning of 15–20 m has produced a loss of 0.1 km3 of ice. The pattern of surface lowering is asymmetric. These geometrical changes are suggested most simply to be due to a net negative mass balance caused by a drier climate. Comparisons of the moraines with the current glaciological surface structure of the glaciers permits speculation of a transition from a polythermal to a cold-based thermal regime. Small land-terminating glaciers in the northern Antarctic Peninsula region could be cooling despite a warming climate.
Resumo:
We describe Global Atmosphere 4.0 (GA4.0) and Global Land 4.0 (GL4.0): configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) community land surface model developed for use in global and regional climate research and weather prediction activities. GA4.0 and GL4.0 are based on the previous GA3.0 and GL3.0 configurations, with the inclusion of developments made by the Met Office and its collaborators during its annual development cycle. This paper provides a comprehensive technical and scientific description of GA4.0 and GL4.0 as well as details of how these differ from their predecessors. We also present the results of some initial evaluations of their performance. Overall, performance is comparable with that of GA3.0/GL3.0; the updated configurations include improvements to the science of several parametrisation schemes, however, and will form a baseline for further ongoing development.
Resumo:
We ran a sequence of climate model experiments for 6000 years ago, with land-surface conditions based on a realistic map of palaeovegetation, lakes and wetlands, to quantify the effects of land-surface feedbacks in the Saharan region. Vegetation-induced albedo and moisture flux changes produced year-round warming, forced the monsoon to 17°–25°N two months earlier, and shifted the precipitation belt ≈300 km northwards compared to the effects of orbital forcing alone. The addition of lakes and wetlands produced localised changes in evaporation and precipitation, but caused no further extension of the monsoon belt. Diagnostic analyses with biome and continental hydrology models showed that the combined land-surface feedbacks, although substantial, could neither maintain grassland as far north as observed (≈26°N) nor maintain Lake “MegaChad” (330,000 km²).
Resumo:
Large changes in the extent of northern subtropical arid regions during the Holocene are attributed to orbitally forced variations in monsoon strength and have been implicated in the regulation of atmospheric trace gas concentrations on millenial timescales. Models that omit biogeophysical feedback, however, are unable to account for the full magnitude of African monsoon amplification and extension during the early to middle Holocene (˜9500–5000 years B.P.). A data set describing land-surface conditions 6000 years B.P. on a 1° × 1° grid across northern Africa and the Arabian Peninsula has been prepared from published maps and other sources of palaeoenvironmental data, with the primary aim of providing a realistic lower boundary condition for atmospheric general circulation model experiments similar to those performed in the Palaeoclimate Modelling Intercomparison Project. The data set includes information on the percentage of each grid cell occupied by specific vegetation types (steppe, savanna, xerophytic woods/scrub, tropical deciduous forest, and tropical montane evergreen forest), open water (lakes), and wetlands, plus information on the flow direction of major drainage channels for use in large-scale palaeohydrological modeling.
Resumo:
In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970–2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process.
Resumo:
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.
Resumo:
This research aimed to investigate the implications of changing agricultural land use from food production towards increased cashew cultivation for food security and poverty alleviation in Jaman North District, Brong-Ahafo Region of Ghana. Based on qualitative, participatory research with a total of 60 participants, the research found that increased cashew production had led to improvements in living standards for many farmers and their children over recent years. Global demand for cashew is projected to continue to grow rapidly in the immediate future and cashew-growing areas of Ghana are well placed to respond to this demand. Cashew farmers however were subject to price fluctuations in the value of Raw Cashew Nuts (RCN) due to unequal power relations with intermediaries and export buyer companies and global markets, in addition to other vulnerabilities that constrained the quality and quantity of cashew and food crops they could produce. The expansion of cashew plantations was leading to pressure on the remaining family lands available for food crop production, which community members feared could potentially compromise the food security of rural communities and the land inheritance of future generations.
Resumo:
he first international urban land surface model comparison was designed to identify three aspects of the urban surface-atmosphere interactions: (1) the dominant physical processes, (2) the level of complexity required to model these, and 3) the parameter requirements for such a model. Offline simulations from 32 land surface schemes, with varying complexity, contributed to the comparison. Model results were analysed within a framework of physical classifications and over four stages. The results show that the following are important urban processes; (i) multiple reflections of shortwave radiation within street canyons, (ii) reduction in the amount of visible sky from within the canyon, which impacts on the net long-wave radiation, iii) the contrast in surface temperatures between building roofs and street canyons, and (iv) evaporation from vegetation. Models that use an appropriate bulk albedo based on multiple solar reflections, represent building roof surfaces separately from street canyons and include a representation of vegetation demonstrate more skill, but require parameter information on the albedo, height of the buildings relative to the width of the streets (height to width ratio), the fraction of building roofs compared to street canyons from a plan view (plan area fraction) and the fraction of the surface that is vegetated. These results, whilst based on a single site and less than 18 months of data, have implications for the future design of urban land surface models, the data that need to be measured in urban observational campaigns, and what needs to be included in initiatives for regional and global parameter databases.