999 resultados para kinetic spectra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The pH-dependent physicochemical properties of the antimicrobial quinolone, nalidixic acid, were exploited to achieve ‘intelligent’ drug release from a potential urinary catheter coating, poly(2-hydroxyethylmethacrylate) (p(HEMA)), in direct response to the elevated pH which occurs at the onset of catheter infection.
Methods. p(HEMA) hydrogels, and reduced-hydrophilicity copolymers incorporating methyl methacrylate, were loaded with nalidixic acid by a novel, surface particulate localization method, and characterized in terms of pH-dependent drug release and microbiological activity against the common urease-producing urinary pathogen Proteus mirabilis.
Results. The pH-dependent release kinetics of surface-localized nalidixic acid were 50- and 10-fold faster at pH 9, representing the alkaline conditions induced by urease-producing urinary pathogens, compared to release at pH 5 and pH 7 respectively. Furthermore, microbiological activity against P. mirabilis was significantly enhanced after loading surface particulate nalidixic acid in comparison to p(HEMA) hydrogels conventionally loaded with dispersed drug. The more hydrophobic methyl methacrylate-containing copolymers also demonstrated this pH responsive behavior, but additionally exhibited a sustained period of zero-order release.
Conclusions. The paradigm presented here provides a system with latent, immediate infection-responsive drug release followed by prolonged zero-order antimicrobial delivery, and represents an ‘intelligent’, infection-responsive, self-sterilizing biomaterial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemoenzymatic dynamic kinetic resolution (DKR) of rac-1-phenyl ethanol into R-1-phenylethanol acetate was investigated with emphasis on the minimization of side reactions. The organometallic hydrogen transfer (racemization) catalyst was varied, and this was observed to alter the rate and extent of oxidation of the alcohol to form ketone side products. The performance of highly active catalyst [(pentamethylcyclopentadienyl) IrCl2(1-benzyl,3-methyl-imidazol-2-ylidene)] was found to depend on the batch of lipase B used. The interaction between the bio- and chemo-catalysts was reduced by employing physical entrapment of the enzyme in silica using a sol-gel process. The nature of the gelation method was found to be important, with an alkaline method preferred, as an acidic method was found to initiate a further side reaction, the acid catalyzed dehydration of the secondary alcohol. The acidic gel was found to be a heterogeneous solid acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biogeochemistry of arsenic (As) in sediments is regulated by multiple factors such as particle size, dissolved organic matter (DOM), iron mobilization, and sediment binding characteristics, among others. Understanding the heterogeneity of factors affecting As deposition and the kinetics of mobilization, both horizontally and vertically, across sediment depositional environments was investigated in Sundarban mangrove ecosystems, Bengal Delta, Bangladesh. Sediment cores were collected from 3 different Sundarbans locations and As concentration down the profiles were found to be more associated with elevated Fe and Mn than with organic matter (OM). At one site chosen for field monitoring, sediment cores, pore and surface water, and in situ diffusive gradients in thin films (DGT) measurements (which were used to model As sediment pore-water concentrations and resupply from the solid phase) were sampled from four different subhabitats. Coarse-textured riverbank sediment porewaters were high in As, but with a limited resupply of As from the solid phase compared to fine-textured and high organic matter content forest floor sediments, where porewater As was low, but with much higher As resupply. Depositional environment (overbank verses forest floor) and biological activity (input of OM from forest biomass) considerably affected As dynamics over very short spatial distances in the mosaic of microhabitats that constitute a mangrove ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO3-challenge and to quantify transport activity. The NO3--associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4-6 days postgermination. In 6-day-old seedlings, additions of 5-100 μm NO3-to the bathing medium resulted in membrane depolarizations of 8-43 mV, and membrane voltage (Vm) recovered on washing NO3-from the bath. Voltage clamp measurements carried out immediately before and following NO3-additions showed that the NO3--evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (-300 to +50 mV). Both membrane depolarizations and NO3--evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm-2. The NO3-current showed a pronounced voltage sensitivity within the normal physiological range between -250 and -100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4-8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO3-]o. At a constant pHo of 6.1, depolarization from -250 to -150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO3-binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO3-anion transported across the membrane. The results concur with previous studies showing a high-affinity NO3-transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3-transport at the plant plasma membrane. © 1995 Springer-Verlag New York Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now widely accepted that intercellular communication can cause significant variations in cellular responses to genotoxic stress. The radiation-induced bystander effect is a prime example of this effect, where cells shielded from radiation exposure see a significant reduction in survival when cultured with irradiated cells. However, there is a lack of robust, quantitative models of this effect which are widely applicable. In this work, we present a novel mathematical model of radiation-induced intercellular signalling which incorporates signal production and response kinetics together with the effects of direct irradiation, and test it against published data sets, including modulated field exposures. This model suggests that these so-called "bystander" effects play a significant role in determining cellular survival, even in directly irradiated populations, meaning that the inclusion of intercellular communication may be essential to produce robust models of radio-biological outcomes in clinically relevant in vivo situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With emission legislation becoming ever more stringent, automotive companies are forced to invest heavily into solutions to meet the targets set. To date the most effective way of treating emissions is through the use of catalytic converters. Current testing methods of catalytic converters whether being tested on a vehicle or in a lab reactor can be expensive and offer little information about what is occurring within the catalyst. It is for this reason and the increased price of precious metal that kinetic modelling has become a popular alternative to experimental testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform multidimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disc wind from an active galactic nucleus. The synthetic spectra confirm expectations from parametrized models that a disc wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disc plane but ultimately falls back. We also confirm that the strong Fe Ka line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disc wind somewhat more challenging and should be considered in future wind simulations. © 2010 The Authors. Journal compilation © 2010 RAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a multidimensional Monte Carlo code to compute X-ray spectra for a variety of active galactic nucleus (AGN) disc-wind outflow geometries. We focus on the formation of blueshifted absorption features in the Fe K band and show that line features similar to those which have been reported in observations are often produced for lines of sight through disc-wind geometries. We also discuss the formation of other spectral features in highly ionized outflows. In particular, we show that, for sufficiently high wind densities, moderately strong Fe K emission lines can form and that electron scattering in the flow may cause these lines to develop extended red wings. We illustrate the potential relevance of such models to the interpretation of real X-ray data by comparison with observations of a well-known AGN, Mrk 766. Journal compilation © 2008 RAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-velocity outflows from supermassive black holes have been invoked to explain the recent identification of strong absorption features in the hard X-ray spectra of several quasars. Here, Monte Carlo radiative transfer calculations are performed to synthesize X-ray spectra from models of such flows. It is found that simple, parametric biconical outflow models with plausible choices for the wind parameters predict spectra that are in good qualitative agreement with observations in the 2-10 keV band. The influence on the spectrum of both the mass-loss rate and opening angle of the flow are considered: the latter is important since photon leakage plays a significant role in establishing an ionization gradient within the flow, a useful discriminant between spherical and conical outflow for this and other applications. Particular attention is given to the bright quasar PG 1211+143 for which constraints on the outflow geometry and mass-loss rate are discussed subject to the limitations of the currently available observational data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present nine near-infrared (NIR) spectra of supernova (SN) 2005cf at epochs from -10 to +42d with respect to B-band maximum, complementing the existing excellent data sets available for this prototypical Type Ia SN at other wavelengths. The spectra show a time evolution and spectral features characteristic of normal Type Ia SNe, as illustrated by a comparison with SNe 1999ee, 2002bo and 2003du. The broad-band spectral energy distribution (SED) of SN 2005cf is studied in combined ultraviolet (UV), optical and NIR spectra at five epochs between ~8d before and ~10d after maximum light. We also present synthetic spectra of the hydrodynamic explosion model W7, which reproduce the key properties of SN 2005cf not only at UV-optical as previously reported, but also at NIR wavelengths. From the radiative-transfer calculations we infer that fluorescence is the driving mechanism that shapes the SED of SNe Ia. In particular, the NIR part of the spectrum is almost devoid of absorption features, and instead dominated by fluorescent emission of both iron-group material and intermediate-mass elements at pre-maximum epochs, and pure iron-group material after maximum light. A single P-Cygni feature of Mgii at early epochs and a series of relatively unblended Coii lines at late phases allow us to constrain the regions of the ejecta in which the respective elements are abundant. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet and X-ray observations show evidence of outflowing gas around many active galactic nuclei. It has been proposed that some of these outflows are driven off gas infalling towards the central supermassive black hole. We perform radiative transfer calculations to compute the gas ionization state and the emergent X-ray spectra for both two- and three-dimensional (3D) hydrodynamical simulations of this outflow-from-inflow scenario. By comparison with observations, our results can be used to test the theoretical models and guide future numerical simulations. We predict both absorption and emission features, most of which are formed in a polar funnel of relatively dense (10 -10 g cm ) outflowing gas. This outflow causes strong absorption for observer orientation angles of ?35°. Particularly in 3D, the strength of this absorption varies significantly for different lines of sight owing to the fragmentary structure of the gas flow. Although infalling material occupies a large fraction of the simulation volume, we do not find that it imprints strong absorption features in the X-ray spectra since the ionization state is predicted to be very high. Thus, an absence of observed inflow absorption features does not exclude the models. The main spectroscopic consequence of the infalling gas is a Compton-scattered continuum component that partially re-fills the absorption features caused by the outflowing polar funnel. Fluorescence and scattering in the outflow are predicted to give rise to several emission features including a multicomponent Fe Ka emission complex for all observer orientations. For the hydrodynamical simulations considered, we predict both ionization states and column densities for the outflowing gas that are too high to be quantitatively consistent with well-observed X-ray absorption systems. Nevertheless, our results are qualitatively encouraging and further exploration of the model parameter space is warranted. Higher resolution hydrodynamic simulations are needed to determine whether the outflows fragment on scales unresolved in our current study, which may yield the denser lower ionization material that could reconcile the models and the observations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly ionized fast accretion disc winds have been suggested as an explanation for a variety of observed absorption and emission features in the X-ray spectra of active galactic nuclei. Simple estimates have suggested that these flows may be massive enough to carry away a significant fraction of the accretion energy and could be involved in creating the link between supermassive black holes and their host galaxies. However, testing these hypotheses, and quantifying the outflow signatures, requires high-quality theoretical spectra for comparison with observations. Here, we describe extensions of our Monte Carlo radiative transfer code that allow us to generate realistic theoretical spectra for a much wider variety of disc wind models than that was possible in our previous work. In particular, we have expanded the range of atomic physics simulated by the code so that L- and M-shell ions can now be included. We have also substantially improved our treatment of both ionization and radiative heating such that we are now able to compute spectra for outflows containing far more diverse plasma conditions. We present example calculations that illustrate the variety of spectral features predicted by parametrized outflow models and demonstrate their applicability to the interpretation of data by comparison with observations of the bright quasar PG1211+143. We find that the major features in the observed 2-10 keV spectrum of this object can be well reproduced by our spectra, confirming that it likely hosts a massive outflow. © 2010 The Authors. Journal compilation © 2010 RAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a temperature dependence of the frequency of all the major peaks in the Raman spectra of carbon nanotubes, using different excitation laser powers at the sample. The frequency decreases with increasing temperature for all peaks, and the shifts in Raman frequencies are linear in the temperature of the sample. In comparison, a similar dependence is found in active carbon, but no shift is observed for the highly ordered pyrolytic graphite within the same range of variation in laser power. A lowering of frequency at higher temperature implies an increase in the carbon-carbon distance at higher temperature. The relatively strong temperature dependence in carbon nanotubes and active carbon may be due to the enhanced increase in carbon-carbon distance. This enhancement may originate from the heavy defects and disorder in these materials. (C) 1998 American Institute of Physics. [S0021-8979(98)05219-0].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.