969 resultados para kinetic constants


Relevância:

10.00% 10.00%

Publicador:

Resumo:

beta-1,3-1,4-Glucanases (E.C. 3.2.1.73) hydrolyze linked beta-D-glucans, such as lichenan and barley beta-glucan. Recombinant beta-1,3-1,4-glucanase from Bacillus subtilis expressed in Escherichia coil and purified by Ni-NTA chromatography exhibited optimum activity at 50 degrees C and pH 6.0. The catalytic half-life at 60 degrees C decreased from 90 to 5 min when the enzyme was incubated in the presence and absence of Ca(2+) respectively. The kinetic parameters of lichenan hydrolysis were 2695, 3.1 and 1220 for V(max) (mu mol/min/mg), K(m) (mg mL(-1)) and K(cat) (s(-1)), respectively. Analysis by DLS, AUC and SAXS demonstrated the enzyme is monomeric in solution. Chemical denaturation monitored by ITFE and far-UV CD yielded Delta G(H2O) values of 9.6 and 9.1 kcal/mol, respectively, showing that the enzyme has intermediate stability when compared with other Bacillus beta-1,3-1,4-glucanases. The crystal structure shows the anti-parallel jelly-roll beta-sheet conserved in all GH16 beta-1,3-1,4-glucanases, with the amino acid differences between Bacillus sp. enzymes that are likely determinants of stability being distributed throughout the protein. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al-catechin/beta-cyclodextrin and Al-quercetin/beta-cyclodextrin (beta-CD) inclusion compounds were synthesized and characterized by IR, UV-vis, H-1 and C-13 NMR and TG and DTA analyses. Because quercetin is sparingly soluble in water, the stability constants of the Al-quercetin/beta-CD and Al-catechin/beta-CD compounds were determined by phase solubility studies. The A(L)-type diagrams indicated the formation of 1:1 inclusion compounds and allowed calculation of the stability constants. The thermodynamic parameters were obtained from the dependence of the stability constants on temperature and results indicated that the formation of the inclusion compounds is an enthalpically driven process. The thermal decomposition of the solid Al-quercetin/beta-CD and Al-catcchin/beta-CD inclusion compounds took place at different stages, compared with the respective precursors, proving that an inclusion complexation process really occurred. (C) 2007 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The (2,3)J(CH) dependence on dihedral angle (theta H-C-C-X) for cyclopentane derivatives was investigated. We observed that the combined use of experimentally obtained (2,3)J(CH) values and the theoretically determined dihedral angles between the corresponding nuclei can be used to infer the relative stereochemistry of the ring substituents in cyclopentane derivatives. There is a good correlation between the magnitude of (3)J(CH) and the dihedral angle between the hydrogen and the coupled carbon (R-2 = 0.88). Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lignan with a new skeleton named chimarrhinin (1) was isolated from an extract of the leaves of Chimarrhis turbinata, a Rubiaceae plant species. (13)C NMR spectrometric techniques including 1D and 2D experiments and HRESIMS provided unequivocal structural confirmation of this new C(6).C(3) skeleton type. The relative configuration of 1 was established by 2D (1)H-H analysis and J couplings, while its conformation was evaluated through molecular modeling using the RM1 semiempirical method, with the aid of coupling constants obtained by NMR analysis. The antioxidant activity of the new derivative 1 and two known and previously isolated phenolic derivatives (2 and 3) was investigated. An IC(50) value of 7.50 +/- 0.5 mu mol L(-1) was obtained for the new derivative 1, while 2 and 3 showed IC(50) values of 18.60 +/- 0.4 and 18.50 +/- 0.6 mu mol, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and structures of two new isostructural mononuclear [Ln(L)(NO(3))(H(2)O)(3)](NO(3))(2) complexes, with Ln = Tb (complex 1) and Eu (complex 2), which display high activity in the hydrolysis of the substrate 2,4-bis(dinitrophenyl)phosphate, are reported. These complexes displayed catalytic behavior similar to the mononuclear gadolinium complex [Gd(L)(NO(3))(H(2)O)(3)](NO(3))(2) previously reported by us (lnorg. Chem. 2008, 47, 2919-2921); one hydrolysis reaction in two stages where the diesterase and monoesterase activities could be monitored separately, with the first stage dependent on and the second independent of the complex concentration. Through potentiometric studies, electrospray ionization mass spectrometry (ESI-MS) analysis, and determination of the kinetic behaviors of 1 and 2 in acetonitrile/water solution, the species present in solution could be identified and suggested a dinuclear species, with one hydroxo group, as the most prominent catalyst under mild conditions. The complexes show high activity (k(1)= 7 and 18 s(-1) for 1 and 2, respectively) and catalytic efficiency. Complexes 1 and 2 were found to be active toward the cleavage of plasmid DNA, and complete kinetic studies were carried out. Studies with a radical scavenger (dimethylsulfoxide) confirmed the hydrolytic action of 1 and 2 in the cleavage of DNA. Studies on the incubation of distamycin with plasmid DNA suggested that 1 and 2 are regio-specific, interacting with the minor groove of DNA. These complexes displayed luminescent properties. Complex 1 showed higher emission intensity than 2 due to a more efficient energy transfer between triplet and emission levels of terbium (T -> (5)D(4)), along with nonradiative deactivation mechanisms of the excited states of europium via multiphonon decays and the ligand-to-metal charge transfer state. Lifetime measurements of the (5)D(4) and (5)D(0) excited levels for 1 and 2, respectively, indicated the numbers of coordinated water molecules for the complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many peptides containing tryptophan have therapeutic uses and can be studied by their fluorescent properties. The biological activity of these peptides involves interactions with many cellular components and micelles can function as carriers inside organisms. We report results from the interaction of small peptides containing tryptophan with several microheterogeneous systems: sodium dodecyl sulphate (SDS) micelles; sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates; and neutral polymeric micelles. We observed that specific parameters, such as wavelength of maximum emission and fluorescence anisotropy, could be used to ascertain the occurrence of interactions. Affinity constants were determined from changes in the intensity of emission while structural modifications in rotameric conformations were verified from time-resolved measurements. Information about the location and diffusion of peptides in the microheterogeneous systems were obtained from tryptophan emission quenching experiments using N-alkylpyridinium ions. The results show the importance of electrostatic and hydrophobic effects, and of the ionization state of charged residues, in the presence of anionic and amphiphilic SDS in the microheterogeneous systems. Conformational stability of peptides is best preserved in the interaction with the neutral polymeric micelles. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenocorticotropin (ACM) and alpha-melanocyte stimulating hormone (alpha-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of alpha-MSH are the same initial sequence of ACM and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1-21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in alpha-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1-24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles; and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in alpha-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the interfacial interactions and structure is important to better design and application of organic-inorganic nanohybrids. This paper presents our recent molecular dynamic studies on organoclays and polymer nanocomposites, including the layering behavior of organoclays, structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays, and interfacial interactions and structure of polyurethane nanocomposites. The results demonstrate that the layering behaviors of organoclays are closely related to the chain length of quaternary alkyl ammoniums and cation exchangeable capacity of clays. In addition to typical layered structures such as monolayer, bilayer and pseudo-trilayer, a pseudo-quadrilayer structure was also observed in organoclays modified with dioctadecyldimethyl ammoniums (DODDMA). In such a structure, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer or even the next nearest layer. Moreover, the diffusion constants of nitrogen and methylene atoms increase with the temperature and methelene towards the tail groups. For polyurethane nanocomposite, the van der Waals interaction between apolar alkyl chains and soft segments of polyurethane predominates the interactions between organoclay and polyurethane. Different from most bulk polyurethane systems, there is no distinct phase-separated structure for the polyurethane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5 x 10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the mechanism of ribonuclease inhibition by ribonuclease inhibitor, a protein built of leucine-rich repeats, based on the crystal structure of the complex between the inhibitor and ribonuclease A. The structure was determined by molecular replacement and refined to an R(cryst) of 19.4% at 2.5 Angstrom resolution. Ribonuclease A binds to the concave region of the inhibitor protein comprising its parallel beta-sheet and loops. The inhibitor covers the ribonuclease active site and directly contacts several active-site residues. The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the pi phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound. The 2550 Angstrom(2) of accessible surface area buried upon complex formation may be one of the major contributors to the extremely tight association (K-i = 5.9 x 10(-14) M). The interaction is predominantly electrostatic; there is a high chemical complementarity with 18 putative hydrogen bonds and salt links, but the shape complementarity is lower than in most other protein-protein complexes. Ribonuclease inhibitor changes its conformation upon complex formation; the conformational change is unusual in that it is a plastic reorganization of the entire structure without any obvious hinge and reflects the conformational flexibility of the structure of the inhibitor. There is a good agreement between the crystal structure and other biochemical studies of the interaction. The structure suggests that the conformational flexibility of RI and an unusually large contact area that compensates for a lower degree of complementarity may be the principal reasons for the ability of RI to potently inhibit diverse ribonucleases. However, the inhibition is lost with amphibian ribonucleases that have substituted most residues corresponding to inhibitor-binding residues in RNase A, and with bovine seminal ribonuclease that prevents inhibitor binding by forming a dimer. (C) 1996 Academic Press Limited

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1-4-mu m-diameter polystyrene spheres in a single-beam gradient trap using measurements of back-scattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10(-6) and 4 x 10(-6) N/m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction. (C) 1996 Optical Society of America.