996 resultados para joint interpretation
Resumo:
A story-stem paradigm was used to assess interpretation bias in preschool children. Data were available for 131 children. Interpretation bias, behavioural inhibition (BI) and anxiety were assessed when children were aged between 3 years 2 months and 4 years 5 months. Anxiety was subsequently assessed 12-months, 2-years and 5-years later. A significant difference in interpretation bias was found between participants who met criteria for an anxiety diagnosis at baseline, with clinically anxious participants more likely to complete the ambiguous story-stems in a threat-related way. Threat interpretations significantly predicted anxiety symptoms at 12-month follow-up, after controlling for baseline symptoms, but did not predict anxiety symptoms or diagnoses at either 2-year or 5- year follow-up. There was little evidence for a relationship between BI and interpretation bias. Overall, the pattern of results was not consistent with the hypothesis that interpretation bias plays a role in the development of anxiety. Instead, some evidence for a role in the maintenance of anxiety over relatively short periods of time was found. The use of a story-stem methodology to assess interpretation bias in young children is discussed along with the theoretical and clinical implications of the findings.
Resumo:
Williams Syndrome (WS) is associated with an unusual profile of anxiety, characterised by increased rates of non-social anxiety but not social anxiety (Dodd & Porter, 2009). The present research examines whether this profile of anxiety is associated with an interpretation bias for ambiguous physical, but not social, situations. Sixteen participants with WS, aged 13-34 years, and two groups of typically developing controls matched to the WS group on chronological age (CA) and mental age (MA), participated. Consistent with the profile of anxiety reported in WS, the WS group were significantly more likely to interpret an ambiguous physical situation as threatening than both control groups. However, no between-group differences were found on the ambiguous social situations.
The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes
Resumo:
This manuscript describes the energy and water components of a new community land surface model called the Joint UK Land Environment Simulator (JULES). This is developed from the Met Office Surface Exchange Scheme (MOSES). It can be used as a stand alone land surface model driven by observed forcing data, or coupled to an atmospheric global circulation model. The JULES model has been coupled to the Met Office Unified Model (UM) and as such provides a unique opportunity for the research community to contribute their research to improve both world-leading operational weather forecasting and climate change prediction systems. In addition JULES, and its forerunner MOSES, have been the basis for a number of very high-profile papers concerning the land-surface and climate over the last decade. JULES has a modular structure aligned to physical processes, providing the basis for a flexible modelling platform.
Resumo:
The authors provide an analytic framework for studying the joint influence of personal achievement goals and classroom goal structures on achievement-relevant outcomes. This framework encompasses 3 models (the direct effect model, indirect effect model, and interaction effect model), each of which addresses a different aspect of the joint influence of the 2 goal levels. These 3 models were examined together with a sample of 1,578 Japanese junior high and high school students from 47 classrooms. Results provided support for each of the 3 models: Classroom goal structures were not only direct, but also indirect predictors of intrinsic motivation and academic self-concept, and some cross-level interactions between personal achievement goals and classroom goal structures were observed (indicating both goal match and goal mismatch effects). A call is made for more research that takes into consideration achievement goals at both personal and structural levels of representation. (PsycINFO Database Record (c) 2012 APA, all rights reserved)(journal abstract)
Resumo:
The use of ageostrophic flow to infer the presence of vertical circulations in the entrances and exits of the climatological jet streams is questioned. Problems of interpretation arise because of the use of different definitions of geostrophy in theoretical studies and in analyses of atmospheric data. The nature and role of the ageostrophic flow based on constant and variable Coriolis parameter definitions of geostrophy vary. In the latter the geostrophic divergence cannot be neglected, so the vertical motion is not associated solely with the ageostrophic flow. Evidence is presented suggesting that ageostrophic flow in the climatological jet streams is primarily determined by the kinematic requirements of wave retrogression rather than by a forcing process. These requirements are largely met by the rotational flow, with the divergent circulations present being geostrophically forced, and so playing a secondary, restoring role.
Resumo:
This paper examines the evolution of knowledge management from the initial knowledge migration stage, through adaptation and creation, to the reverse knowledge migration stage in international joint ventures (IJVs). While many studies have analyzed these stages (mostly focusing on knowledge transfer), we investigated the path-dependent nature of knowledge flow in IJVs. The results from the empirical analysis based on a survey of 136 Korean parent companies of IJVs reveal that knowledge management in IJVs follows a sequential, multi-stage process, and that the knowledge transferred from parents to IJVs must first be adapted within its new environment before it reaches the creation stage. We also found that only created knowledge is transferred back to parents.
Resumo:
Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.
Resumo:
The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1)-(3) are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.
Resumo:
Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment
Resumo:
Background Models of the development and maintenance of childhood anxiety suggest an important role for parent cognitions: that is, negative expectations of children's coping abilities lead to parenting behaviors that maintain child anxiety. The primary aims of the current study were to (1) compare expectations of child vulnerability and coping among mothers of children with anxiety disorders on the basis of whether or not mothers also had a current anxiety disorder, and (2) examine the degree to which the association between maternal anxiety disorder status and child coping expectations was mediated by how mothers interpreted ambiguous material that referred to their own experience. Methods The association between interpretations of threat, negative emotion, and control was assessed using hypothetical ambiguous scenarios in a sample of 271 anxious and nonanxious mothers of 7- to 12-year-old children with an anxiety disorder. Mothers also rated their expectations when presented with real life challenge tasks. Results There was a significant association between maternal anxiety disorder status and negative expectations of child coping behaviors. Mothers’ self-referent interpretations were found to mediate this relationship. Responses to ambiguous hypothetical scenarios correlated significantly with responses to real life challenge tasks. Conclusions Treatments for childhood anxiety disorders in the context of parental anxiety disorders may benefit from the inclusion of a component to directly address parental cognitions. Some inconsistencies were found when comparing maternal expectations in response to hypothetical scenarios with real life challenges. This should be addressed in future research.
Resumo:
Traditional dictionary learning algorithms are used for finding a sparse representation on high dimensional data by transforming samples into a one-dimensional (1D) vector. This 1D model loses the inherent spatial structure property of data. An alternative solution is to employ Tensor Decomposition for dictionary learning on their original structural form —a tensor— by learning multiple dictionaries along each mode and the corresponding sparse representation in respect to the Kronecker product of these dictionaries. To learn tensor dictionaries along each mode, all the existing methods update each dictionary iteratively in an alternating manner. Because atoms from each mode dictionary jointly make contributions to the sparsity of tensor, existing works ignore atoms correlations between different mode dictionaries by treating each mode dictionary independently. In this paper, we propose a joint multiple dictionary learning method for tensor sparse coding, which explores atom correlations for sparse representation and updates multiple atoms from each mode dictionary simultaneously. In this algorithm, the Frequent-Pattern Tree (FP-tree) mining algorithm is employed to exploit frequent atom patterns in the sparse representation. Inspired by the idea of K-SVD, we develop a new dictionary update method that jointly updates elements in each pattern. Experimental results demonstrate our method outperforms other tensor based dictionary learning algorithms.