991 resultados para intertidal environment
Resumo:
Sediment is commonly considered as a source of phosphine, which is a highly toxic and reactive atmospheric trace gas. This study aims to investigate the seasonal and spatial distribution of matrix-bound phosphine (MBP) and its relationship with the environment in the Changjiang River Estuary. A total of 43 surface sediments were collected in four seasons of 2006, and concentrations of MBP and relative environmental factors were analyzed. MBP ranged from 1.93 to 94.86 ng kg(-1) dry weight (dw) with an average concentration of 17.14 ng kg(-1) dw. The concentrations of MBP in the tipper estuary were, higher than those in the lower estuary, which could be attributed to greater pollutant inputs in the upper estuary. The concentrations of MBP also varied with season, with November > August > May > February. Significant correlations existed between MBP and total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (W), organic carbon (OC), total nitrogen (TN), the grain size, and redox potential (Eh), suggesting that these sedimentary environmental characteristics played an important role in controlling the MBP levels in the sediments. Notably, there were positive linear relationships between the concentrations of soluble reactive phosphorus (SRP), TP, and chlorophyll a (Chl a) in bottom water and MBP in sediments. These relationships might be very complicated and need further exploration. This work is the first comprehensive study of the seasonal and spatial distribution of MBP in sediments and its relationships with environmental factors in a typical estuary, and will lead to deeper understanding of the phosphorus (P) biogeochemical cycle. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Data collected from 12 marine monitoring stations in Daya Bay from 1982 to 2004 reveal a substantial change in the ecological environment of this region. The average N/P ratio increased from 1.377 in 1985 to 49.09 in 2004. Algal species changed from 159 species of 46 genera in 1982 to 126 species of 44 genera in 2004. Major zooplankton species went from 46 species in 1983 to 36 species in 2004. The annual mean biomass of benthic animals was recorded at 123.10 gm(2) in 1982 and 126.68 g m(2) in 2004. Mean biomass and species of benthic animals near nuclear power plants ranged froth 317.9 g m(2) in 1991 to 45.24 g m(2) in 2004 and from 250 species in 1991 to 177 species in 2004. A total of 12-19 species of hermatypic corals and 13 species of mangrove plants were observed in Daya Bay from 1984 to 2002. 2008 Elsevier Ltd. All rights reserved.
Resumo:
Magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats. Because of their fastidious requirements for growth conditions, only very few axenic MTB cultures have been obtained worldwide. In this study, we report a novel marine magnetotactic spirillum axenic culture, designated as QH-2, isolated from the China Sea. It was able to grow in semi-solid or liquid chemically defined medium. The cells were amphitrichously flagellated and contained one single magnetosome chain with an average number of 16 magnetosomes per cell. Phosphate and lipid granules were also observed in the cells. Both rock magnetism and energy-dispersive X-ray spectroscopy characterizations indicated that the magnetosomes in QH-2 were single-domain magnetites (Fe3O4). QH-2 cells swam mostly in a straight line at a velocity of 20-50 mu m/s and occasionally changed to a helical motion. Unlike other magnetotactic spirilla. QH-2 cells responded to light illumination. As a consequence of illumination, the cells changed the direction in which they swam from parallel to the magnetic field to antiparallel. This response appears to be similar to the effect of an increase in [O-2]. Analysis of the QH-2 16S rRNA sequence showed that it had greater than 11% sequence divergence from freshwater magnetotactic spirilla. Thus, the marine QH-2 strain seems to be both phylogenetically and magnetotactically distinct from the freshwater Magnetospirillum spp. studied previously. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The community structure of intertidal macrobenthos in Changdao Archipelago (north of Shandong Peninsula, between Bohai Bay and the northern Yellow Sea) was examined based on samples collected from 14 stations in five transects in June 2007. Three stations corresponding to high, medium and low tidal areas were set up for each transect. A total of 68 macrobenthic species were found in the research region, most of which belonged to Mollusca and Crustacea. The average abundance and biomass of the macrobenthos was 1383 ind./m(2) and 372.41 g/m(2), respectively. The use of an arbitrary similarity level of 20% resulted in identification of five groups among the 14 stations in the research region. There were remarkable differences in the biomass, abundance and Shannon-Wiener diversity index of the different sediments. Specifically, the order of biomass was rocky shores > gravel > mud-sand > coarse sand > stiff mud, while the order of abundance was rocky shores > coarse sand > mud-sand > gravel > stiff mud, and that of the diversity index was mud-sand > gravel > stiff mud > rocky shores > coarse sand. The above results revealed that the sediment type was the most important factor affecting the structure of the macrobenthic community of the intertidal zone.
Resumo:
Two marine urostylid ciliates, Holosticha hamulata n. sp. and Holosticha heterofoissneri Hu and Song, 2001, were investigated using live observation and protargol impregnation. Both species were isolated from Korean intertidal sediments of the Yellow Sea. Holosticha hamulata measures about 150 x 25 pro in vivo, and is characterized by a tripartite body shape with a narrow head, an inflated trunk, and a tail that distally projects ventrally forming a hook-like structure. It is the characteristic body shape that distinguishes H. hamulata distinctly from congeners. Holosticha hamulata differs from H. heterofoissneri, possibly the nearest relative, also by the location of the contractile vacuole (ahead of mid-body versus near posterior body third) and the configuration of the macronucleus (on average, 33 scattered nodules assuming a Y-shape versus 17 nodules that may form a U shape). The average number of the macronuclear nodules is a pronounced feature showing great consistency in populations of each species. However, their arrangement is variable in H. heterofoissneri where the nodules are basically scattered or connected by fine fibers forming an elongate U-shape. The location of the contractile vacuole as a taxonomic feature is discussed and a dichotomous key to the species of Holosticha sensu stricto is provided.
Resumo:
Susceptibility to stress corrosion cracking of X56 steel and its relationship with hydrogen permeation behaviour in atmospheric environment containing H2S was investigated by hydrogen permeation tests at a slow strain rate. The results show that: the fracture strain decreases with the decrease of strain rate under the same experimental conditions; the fracture strain also decreases with the increase of H2S concentration under the same strain rate, and the increased concentration of H2S has no significant effect on the hydrogen permeation in the first wet, etc. dry cycle, however has lead to increased hydrogen permeation in the later cycles. The SEM images of the fractured surfaces show clear evidences of enhanced stress corrosion cracking susceptibility by H2S.
Resumo:
Three kinds of steels were studied using electrically connected hanging specimen in the corrosion simulation device and offshore long scale hanging specimen. The experimental results obtained by the two methods show that the device can better reflect the offshore corrosion environment. A Ni-Cu-P steel specimen was studied through analysis of the specimen's corrosion products and corrosion types. The surface of the samples before and after the removal of the rust layer produced by these two methods were observed and compared after some experiments. The microstructure of the corrosion products under different marine environments were analyzed and compared through IR. It indicated good correlation between the electrically connected hanging specimen method and the long scale hanging specimen method.
Resumo:
The application of hot-dipped zinc and zinc-aluminum alloy coatings were introduced. Exposure tests of the steels with these coatings were conducted in the offshore atmosphere in Qingdao and Xiamen for 12 years separately. Effects of the coating thickness, alloy composition and atmospheric environment on the corrosion performance were studied. Results of the onsite exposure tests were compared with the results of a previous indoor salt spray accelerated corrosion tests. The study supports that zinc-aluminum alloy coatings are useful in providing better corrosion resistance and can be further developed for future applications.
Resumo:
Hydrogen permeation of 16Mn steel under a cyclic wet-dry condition was investigated by Devanathan-Stachurski's electrolytic cell with a membrane covered on the exit side by a nickel layer and the weight loss was measured for each wet-dry cycle. The results show that hydrogen permeation current change with different atmospheric environment: distilled water, seawater, and seawater containing 100 ppm H2S. The results show that seawater can induce an increase in the hydrogen permeation current due to the hydrolyzation reaction. And after the increase, equilibrium is reached due to the equilibrium of hydrolyzation reaction effect and the block of the rust layer. On the other hand, H2S contamination also can induce an increase in the maximum hydrogen permeation current due to the hydrolyzation reaction. And H2S contamination delays the time that hydrogen permeation is detected because of the formation of the FeS(1-x) film. The FeS(1-x) film can block the absorption of hydrogen onto the specimen surface. The surface potential change and the pH change of the metal surface control the hydrogen permeation current. And a clear linear correlation exists between the quantities of hydrogen permeated through the 16Mn steel and the weight loss. Based on the linear correlation, we monitored the corrosion rate by monitoring the hydrogen permeation current by a sensor outside. Good coherences were shown between results in laboratory and outside.