995 resultados para instrumentation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, we report a novel, in vivo, noninvasive technique to determine radial arterial compliance using the radial arterial pressure pulse waveform (RAPPW) acquired by fiber Bragg grating pulse recorder (FBGPR). The radial arterial compliance of the subject can be measured during sphygmomanometric examination by the unique signatures of arterial diametrical variations and the beat-to-beat pulse pressure acquired simultaneously from the RAPPW recorded using FBGPR. This proposed technique has been validated against the radial arterial diametrical measurements obtained from the color Doppler ultrasound. Two distinct trials have been illustrated in this work and the results from both techniques have been found to be in good agreement with each other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bi1-xCaxMnO3 (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the n-type Si (100) substrate at two different temperatures of 400 degrees C and 800 degrees C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca2+ ions into BiMnO3 films. The BCMO (x = 0.2) film grown at 400 degrees C shows better magnetization (M-sat) and polarization (P-s) with the measured values of 869 emu / cc and 6.6 mu(C)/cm(2) respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca2+ ions substituted BMO films makes potentially interesting for spintronic device applications. (C) 2014 Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Half-sandwich organometallic ruthenium complexes of seleno-nucleobases, 3 and 4, were synthesized and characterized. The structures of both complexes were determined by X-ray crystallography and are the first crystal structures of ruthenium complexes with seleno-nucleobases. Interestingly, 3 self-assembles aided by adventitious water in DMF to give a tetranuclear square 3a center dot 6H(2)O. Complex 4 is active against Jurkat and Molt-4 cell lines but inactive against the K562 cell line, whereas 3 is completely inactive against all three cell lines. The free ligand 6-selenopurine (1) and 6-selenoguanine (2) are highly active against these cell lines. Compound 2, like its thio analogue, is unstable under UVA light, whereas 4 is stable under similar conditions, which suggests that the ruthenium complex could reduce problems associated with the instability of the free ligand, 2, under irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SnS quantum dot solar cell is fabricated by Successive Ionic Layer Adsorption and Reaction (SILAR) method. SnS layer is optimized by different SILAR cycles of deposition. The particle size increased with the increase in number of SILAR cycles. Cu2S coated FTO is used as counter electrode against the conventional Platinum electrode. On comparison with a cell having a counter electrodeelectrolyte combination of Platinum-Iodine, Cu2S-polysulfide combination is found to improve both the short circuit current and fill factor of the solar cell. A maximum efficiency of 0.54% is obtained with an open circuit voltage of 311 mV and short circuit current density of 4.86 mA/cm. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All solid state batteries are essential candidate for miniaturizing the portable electronics devices. Thin film batteries are constructed by layer by layer deposition of electrode materials by physical vapour deposition method. We propose a promising novel method and unique architecture, in which highly porous graphene sheet embedded with SnO2 nanowire could be employed as the anode electrode in lithium ion thin film battery. The vertically standing graphene flakes were synthesized by microwave plasma CVD and SnO2 nanowires based on a vapour-liquid-solid (VLS) mechanism via thermal evaporation at low synthesis temperature (620 degrees C). The graphene sheet/SnO2 nanowire composite electrode demonstrated stable cycling behaviours and delivered a initial high specific discharge capacity of 1335 mAh g(-1) and 900 mAh g(-1) after the 50th cycle. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with various current densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flow cytometry is a benchmark technique used for basic research and clinical diagnosis of various diseases. Despite being a high-throughput technique, it fails in capturing the morphology of cells being analyzed. Imaging flow cytometry is a combination of flow-cytometry and digital microscopy, which offers advantages of both the techniques. In this paper, we report on the development of an indigenous Imaging Flow Cytometer, realized with the combination of Optics, Microfluidics, and High-speed imaging. A custom-made bright-field transmission microscope is used to capture images of cells flowing across the microfluidic device. High-throughput morphological analysis on suspension of yeast cells is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose two-photon excitation-based light-sheet technique for nano-lithography. The system consists of 2 -configured cylindrical lens system with a common geometrical focus. Upon superposition, the phase-matched counter-propagating light-sheets result in the generation of identical and equi spaced nano-bump pattern. Study shows a feature size of as small as few tens of nanometers with a inter-bump distance of few hundred nanometers. This technique overcomes some of the limitations of existing nano-lithography techniques, thereby, may pave the way for mass-production of nano-structures. Potential applications can also be found in optical microscopy, plasmonics, and nano-electronics. Microsc. Res. Tech. 78:1-7, 2015. (c) 2014 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a direct correlation between dissimilar ion pair formation and alkali ion transport in soda-lime silicate glasses established via broad band conductivity spectroscopy and local structural probe techniques. The combined Raman and Nuclear Magnetic Resonance (NMR) spectroscopy techniques on these glasses reveal the coexistence of different anionic species and the prevalence of Na+-Ca2+ dissimilar pairs as well as their distributions. The spectroscopic results further confirm the formation of dissimilar pairs atomistically, where it increases with increasing alkaline-earth oxide content These results, are the manifestation of local structural changes in the silicate network with composition which give rise to different environments into which the alkali ions hop. The Na+ ion mobility varies inversely with dissimilar pair formation, i.e. it decreases with increase of non-random formation of dissimilar pairs. Remarkably, we found that increased degree of non-randomness leads to temperature dependent variation in number density of sodium ions. Furthermore, the present study provides the strong link between the dynamics of the alkali ions and different sites associated with it in soda-lime silicate glasses. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensing of relative humidity (RH) at room temperature has potential applications in several areas ranging from biomedical to horticulture, paper, and textile industries. In this paper, a highly sensitive humidity sensor based on carbon nanotubes (CNTs) coated on the surface of an etched fiber Bragg grating (EFBG) sensor has been demonstrated, for detecting RH over a wide range of 20%-90% at room temperature. When water molecules interact with the CNT coated EFBG, the effective refractive index of the fiber core changes, resulting in a shift in the Bragg wavelength. It has been possible to achieve a high sensitivity of similar to 31 pm/% RH, which is the highest compared with many of the existing FBG-based humidity sensors. The limit of detection in the CNT coated EFBG has been found to be similar to 0.03 RH. The experimental data shows a linear response of Bragg wavelength shift with increase in humidity. This novel method of incorporating CNTs on to the FBG sensor for humidity sensing has not been reported before.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waveguides have been fabricated on melt-quenched, bulk chalcogenide glasses using the femto-second laser inscription technique at low repetition rates in the single scan regime. The inscribed waveguides have been characterized by butt-coupling method and the diameter of the waveguide calculated using the mode-field image of the waveguide. The waveguide cross-section symmetry is analyzed using the heat diffusion model by relating the energy and translation speed of the laser. The net-fluence and symmetry of the waveguides are correlated based on the theoretical values and experimental results of guiding cross-section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method employing an optical probe is presented to measure density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a random dot pattern. Local slopes of the distorted wavefront are obtained from shifts of the dots in the pattern. Local shifts in the dots are accurately measured by cross-correlating local shifted shadows with the corresponding unshifted originals. The measured slopes are suitably unwrapped by using a discrete cosine transform based phase unwrapping procedure and also through iterative procedures. The unwrapped phase information is used in an iterative scheme for a full quantitative recovery of density distribution in the shock around the model through refraction tomographic inversion. Hypersonic flow field parameters around a missile shaped body at a free-stream Mach number of 5.8 measured using this technique are compared with the numerically estimated values. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear stochastic filtering scheme based on a Gaussian sum representation of the filtering density and an annealing-type iterative update, which is additive and uses an artificial diffusion parameter, is proposed. The additive nature of the update relieves the problem of weight collapse often encountered with filters employing weighted particle based empirical approximation to the filtering density. The proposed Monte Carlo filter bank conforms in structure to the parent nonlinear filtering (Kushner-Stratonovich) equation and possesses excellent mixing properties enabling adequate exploration of the phase space of the state vector. The performance of the filter bank, presently assessed against a few carefully chosen numerical examples, provide ample evidence of its remarkable performance in terms of filter convergence and estimation accuracy vis-a-vis most other competing filters especially in higher dimensional dynamic system identification problems including cases that may demand estimating relatively minor variations in the parameter values from their reference states. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An accurate and highly sensitive sensor platform has been demonstrated for the detection of C-reactive protein (CRP) using optical fiber Bragg gratings (FBGs). The CRP detection has been carried out by monitoring the shift in Bragg wavelength (Delta lambda(B)) of an etched FBG (eFBG) coated with an anti-CRP antibody (aCRP)-graphene oxide (GO) complex. The complex is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. A limit of detection of 0.01 mg/L has been achieved with a linear range of detection from 0.01 mg/L to 100 mg/L which includes clinical range of CRP. The eFBG sensor coated with only aCRP (without GO) show much less sensitivity than that of aCRP-GO complex coated eFBG. The eFBG sensors show high specificity to CRP even in the presence of other interfering factors such as urea, creatinine and glucose. The affinity constant of similar to 1.1 x 10(10) M-1 has been extracted from the data of normalized shift (Delta lambda(B)/lambda(B)) as a function of CRP concentration. (C) 2014 Elsevier B.V. All rights reserved.