999 resultados para infrared detectors
Resumo:
The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.
Resumo:
Infrared observations of the outbursting black hole XTE J1118+480 (ATEL #383) were performed using SQIID on the Kitt Peak National Observatory 2.1m telescope. Observations spanning 2005 January 15.42-15.58 found it somewhat fainter than the previous outburst (IAUC # 7394 , # 7407 ), at average brightness J=12.91+/-0.03, H=12.50+/-0.03, K=11.95+/-0.03. The colors again correspond to an approximately flat spectrum in F_nu. No orbital variation is apparent, but there is substantial unresolved rapid variability with rms amplitude 22% in K (between 2s exposures). Further observations are planned nightly until Jan 21.
Resumo:
p-(Dimethylamino)phenyl pentazole, DMAP-N5 (DMAP = Me2N−C6H4), was characterized by picosecond transient infrared spectroscopy and infrared spectroelectrochemistry. Femtosecond laser excitation at 310 or 330 nm produces the DMAP-N5 (S1) excited state, part of which returns to the ground state (τ = 82 ± 4 ps), while DMAP-N and DMAP-N3 (S0) are generated as double and single N2-loss photoproducts with η ≈ 0.14. The lifetime of DMAP-N5 (S1) is temperature and solvent dependent. [DMAP-N3]+ is produced from DMAP-N5 in a quasireversible, one-electron oxidation process (E1/2 = +0.67 V). Control experiments with DMAP-N3 support the findings. DFT B3LYP/6-311G** calculations were used to identify DMAP-N5 (S1), DMAP-N3 +, and DMAP-N in the infrared spectra. Both DMAP-N5 (S1) and [DMAP-N5]+ have a weakened N5 ring structure.
Resumo:
The extraterrestrial solar spectrum (ESS) is an important component in near infrared (near-IR) radiative transfer calculations. However, the impact of a particular choice of the ESS in these regions has been given very little attention. A line-by-line (LBL) transfer model has been used to calculate the absorbed solar irradiance and solar heating rates in the near-IR from 2000-10000 cm−1(1-5 μm) using different ESS. For overhead sun conditions in a mid-latitude summer atmosphere, the absorbed irradiances could differ by up to about 11 Wm−2 (8.2%) while the tropospheric and stratospheric heating rates could differ by up to about 0.13 K day−1 (8.1%) and 0.19 K day−1 (7.6%). The spectral shape of the ESS also has a small but non-negligible impact on these factors in the near-IR.
Resumo:
CFC-113a (CF3CCl3), CFC-112 (CFCl2CFCl2) and HCFC-133a (CF3CH2Cl) are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP). The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012) concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100), are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a
Resumo:
Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (‘CKD’) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (‘CAVIAR’). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4 and 9%, the change in clear-sky downward surface irradiance is 7 and 18% more negative, and the global-mean precipitation response decreases by 1 and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.
Resumo:
Picosecond transient absorption (TA) and time-resolved infrared (TRIR) measurements of rac-[Cr(phen)2(dppz)]3+ (1) intercalated into double-stranded guanine-containing DNA reveal that the excited state is very rapidly quenched. As no evidence was found for the transient electron transfer products, it is proposed that the back electron transfer reaction must be even faster (<3 ps).
Resumo:
The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses and mirror coatings to discriminate wavelengths at 8.8, 10.8, & 12.0 µm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented.
Resumo:
Scintillometry, a form of ground-based remote sensing, provides the capability to estimate surface heat fluxes over scales of a few hundred metres to kilometres. Measurements are spatial averages, making this technique particularly valuable over areas with moderate heterogeneity such as mixed agricultural or urban environments. In this study, we present the structure parameters of temperature and humidity, which can be related to the sensible and latent heat fluxes through similarity theory, for a suburban area in the UK. The fluxes are provided in the second paper of this two-part series. A millimetre-wave scintillometer was combined with an infrared scintillometer along a 5.5 km path over northern Swindon. The pairing of these two wavelengths offers sensitivity to both temperature and humidity fluctuations, and the correlation between wavelengths is also used to retrieve the path-averaged temperature–humidity correlation. Comparison is made with structure parameters calculated from an eddy covariance station located close to the centre of the scintillometer path. The performance of the measurement techniques under different conditions is discussed. Similar behaviour is seen between the two data sets at sub-daily timescales. For the two summer-to-winter periods presented here, similar evolution is displayed across the seasons. A higher vegetation fraction within the scintillometer source area is consistent with the lower Bowen ratio observed (midday Bowen ratio < 1) compared with more built-up areas around the eddy covariance station. The energy partitioning is further explored in the companion paper.
Resumo:
A millimetre-wave scintillometer was paired with an infrared scintillometer, enabling estimation of large-area evapotranspiration across northern Swindon, a suburban area in the UK. Both sensible and latent heat fluxes can be obtained using this "two-wavelength" technique, as it is able to provide both temperature and humidity structure parameters, offering a major advantage over conventional single-wavelength scintillometry. The first paper of this two-part series presented the measurement theory and structure parameters. In this second paper, heat fluxes are obtained and analysed. These fluxes, estimated using two-wavelength scintillometry over an urban area, are the first of their kind. Source area modelling suggests the scintillometric fluxes are representative of 5–10 km2. For comparison, local-scale (0.05–0.5 km2) fluxes were measured by an eddy covariance station. Similar responses to seasonal changes are evident at the different scales but the energy partitioning varies between source areas. The response to moisture availability is explored using data from 2 consecutive years with contrasting rainfall patterns (2011–2012). This extensive data set offers insight into urban surface-atmosphere interactions and demonstrates the potential for two-wavelength scintillometry to deliver fluxes over mixed land cover, typically representative of an area 1–2 orders of magnitude greater than for eddy covariance measurements. Fluxes at this scale are extremely valuable for hydro-meteorological model evaluation and assessment of satellite data products
Resumo:
This paper reports the first derived thermo-optical properties for vacuum deposited infrared thin films embedded in multilayers. These properties were extracted from the temperature-dependence of manufactured narrow bandpass filters across the 4-17 µm mid-infrared wavelength region. Using a repository of spaceflight multi-cavity bandpass filters, the thermo-optical expansion coefficients of PbTe and ZnSe were determined across an elevated temperature range 20-160 ºC. Embedded ZnSe films showed thermo-optical properties similar to reported bulk values, whilst the embedded PbTe films of lower optical density, deviate from reference literature sources. Detailed knowledge of derived coefficients is essential to the multilayer design of temperature-invariant narrow bandpass filters for use in non-cooled infrared detection systems. We further present manufacture of the first reported temperature-invariant multi-cavity narrow bandpass filter utilizing PbS chalcogenide layer material.
Resumo:
Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.