949 resultados para immobilized metal-ion affinity chromatography
Resumo:
Traditionally, in the cigarettes industry, the determination of ammonium ion in the mainstream smoke is performed by ion chromatography. This work studies this determination and compares the results of this technique with the use of external and internal standard calibration. A reference cigarette sample presented measurement uncertainty of 2.0 μg/cigarette and 1.5 μg/cigarette, with external and internal standard, respectively. It is observed that the greatest source of uncertainty is the bias correction factor and that it is even more significant when using external standard, confirming thus the importance of internal standardization for this correction.
Resumo:
The stability constants of the 1:1 complexes formed between M2+ (M2+: Mn2+, Ni2+, Cu2+, or Cd2+) and BMADA2- (BMADA: 2,2'-(5-bromo-6-methylpyrimidine-2,4 diyl)bis(azanediyl)dipropanoic acid) were determined by potentiometric pH titration in aqueous solution (I = 0.1 mol L-1, NaNO3, 25 °C). The stability of the binary M - BMADA complexes is determined by the basicity of the carboxyl or amino groups. All the stability constants reported in this work exhibit the usual trend, and the order obtained was Mn2+< Ni2+ < Cu2+ > Cd2+. The observed stability order for BMADA approximately follows the Irving - Williams sequence. In the M - BMADA complexes, the M ion is able to form a macrochelate via the pyrimidine group of BMADA.
Resumo:
A potentiometric Nickel sensor was prepared using 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone as electro-active material and epoxy resin as a binding material. A membrane composed of 40% Schiff's base and 60% epoxy resin exhibited the best performance. The membrane showed excellent response in the concentration range of 0.15 ppm to 0.1 mol L- 1 Ni+2 ions with non-Nernstian slope of 22.0 mV/decade, had a rapid response time (less than 10 s), and can be used for three months without any considerable loss of potential. The sensor was useful within the pH range of 1.3 to 9.6, and was able to discriminate between Ni2+ and a large number of alkaline earth and transition metal ions. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Ni2+ with EDTA and oxalic acid.
Resumo:
Ilex paraguariensis (yerba-mate) is used as a beverage, and its extract requires adequate quality control methods in order to guarantee quality and safe use. Strategies to develop and optimize a chromatographic method to quantify theobromine, caffeine, and chlorogenic acid in I. paraguariensis extracts were evaluated by applying a quality by design (QbD) model and ultra high-performance liquid chromatography (UHPLC). The presence of these three phytochemical markers in the extracts was evaluated using UHPLC-MS and was confirmed by the chromatographic bands in the total ion current traces (m/z of 181.1 [M+H]+, 195.0 [M+H]+, and 353.0 [M−H]−, respectively). The developed method was then transferred to a high-performance liquid chromatography (HPLC) platform, and the three phytochemical markers were used as external standards in the validation of a method for analyses of these compounds in extracts using a diode array detector (DAD). The validated method was applied to quantify the chlorogenic acid, caffeine, and theobromine in the samples. HPLC-DAD chromatographic fingerprinting was also used in a multivariate approach to process the entire data and to separate the I. paraguariensis extracts into two groups. The developed method is very useful for qualifying and quantifying I. paraguariensis extracts.