959 resultados para idiosyncratic dispersion
Resumo:
Pb(II) binding by SiO2 nanoparticles in an aqueous dispersion was investigated under conditions where the concentrations of Pb2+ ions and nanoparticles are of similar magnitude. Conditional stability constants (log K) obtained at different values of pH and ionic strength varied from 4.4 at pH 5.5 and I = 0.1 M to 6.4 at pH 6.5 and I = 0.0015 M. In the range of metal to nanoparticle ratios from 1.6 to 0.3, log K strongly increases, which is shown to be due to heterogeneity in Pb(II) binding. For an ionic strength of 0.1 M the Pb2+/SiO2 nanoparticle system is labile, whereas for lower ionic strengths there is loss of lability with increasing pH and decreasing ionic strength. Theoretical calculations on the basis of Eigen-type complex formation kinetics seem to support the loss of lability. This is related to the nanoparticulate nature of the system, where complexation rate constants become increasingly diffusion controlled. The ion binding heterogeneity and chemodynamics of oxidic nanoparticles clearly need further detailed research.
Resumo:
L’objectif de ce travail est mettre en place un modèle hydro-sédimentaire de dispersion des radionucléides, comme outil d’aide à la décision suite à une hypothétique contamination marine accidentelle. Appliqué à la Rade de Toulon, il utilise le modèle MARS-3D pour l’étude hydrodynamique et le module MIXSED pour la dynamique des différentes classes de sédiments. Les cas d’application présentés concernent le césium et le plutonium, qui ont des affinités très différentes avec les sédiments fins. Les simulations de rejet, effectuées en fond de baie, montrent une variabilité saisonnière marquée, due aux conditions météorologiques typiques, mais aussi aux conditions de débit et de charge sédimentaire associée du fleuve Las, qui se jette dans la Rade. Ainsi, les simulations par forts vents, qui favorisent la circulation et les échanges de masses d’eau, présentent une diminution rapide des activités dissoutes. Par ailleurs, le Vent d’Est hivernal, qui engendre d’importantes crues du Las et un apport de sédiments à la Rade, favorise le piégeage des radionucléides dans les sédiments de fond, où les deuxtiers de la contamination initiale sont piégés après une simulation de deux mois.
Resumo:
Calcium sulfoaluminate (CSA) cements/mortars are receiving increasing attention since their manufacture produces less CO2 than ordinary Portland cement (OPC) (up to 22% of decrease depending on its composition). These systems are complex and there are many parameters affecting their hydration mechanism, such as water-to-cement (w/c) ratio, type and amount of sulfate source, and so on. Low w/c ratios, within certain limits, may reduce the porosity and consequently, improve the mechanical strengths. However, it is accompanied by an increasing of viscosity and lack of both workability and homogeneity, with the consequent negative effect on the mechanical properties. The dispersion of the particles through the adsorption of the right amount and type of additives, such as superplasticizers, is a key point to improve the workability of mortars allowing both the preparation of homogeneous mixtures and the reduction of the amount of mixing water. This work deals with the preparation and optimization of homogeneous CSA-mortars with improved mechanical strengths. The optimum amount of superplasticizer was optimized through rheological measurements. The effect of different amounts of the superplasticizer on the viscosity of the mortars, its hydration mechanism and corresponding mechanical properties has been studied and will be discussed.
Resumo:
Poster presented at the Workshop on Flexible Models for Longitudinal and Survival Data with Applications in Biostatistics. University of Warwick, Coventry, UK, 27-29 July 2015
Resumo:
Poster presented at the From Basic Sciences to Clinical Research: 1st International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015
Resumo:
The performances of two parametrized functionals (namely B3LYP and B2PYLP) have been compared with those of two non-parametrized functionals (PBE0 and PBE0-DH) on a relatively large benchmark set when three different types of dispersion corrections are applied [namely the D2, D3 and D3(BJ) models]. Globally, the MAD computed using non-parametrized functionals decreases when adding dispersion terms although the accuracy not necessarily increases with the complexity of the model of dispersion correction used. In particular, the D2 correction is found to improve the performances of both PBE0 and PBE0-DH, while no systematic improvement is observed going from D2 to D3 or D3(BJ) corrections. Indeed when including dispersion, the number of sets for which PBE0-DH is the best performing functional decreases at the benefit of B2PLYP. Overall, our results clearly show that inclusion of dispersion corrections is more beneficial to parametrized double-hybrid functionals than to non-parametrized ones. The same conclusions globally hold for the corresponding global hybrids, showing that the marriage between non-parametrized functionals and empirical corrections may be a difficult deal.
Resumo:
Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. We have previously proposed a description of supramolecular polyphenol complexes by the B3P86 density functional coupled with some corrections for dispersion. We couple here the B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31, and S12L datasets for non-covalent interactions. Furthermore, the association energies of these complexes were carefully compared to those obtained by other dispersion-corrected functionals, such as B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, this set of models were also applied to a database composed of seven non-covalent polyphenol complexes of the most interest.
Resumo:
Purpose: To enhance the solubility and dissolution rate of the antidiabetic drug repaglinide by solid dispersion (SD) technique Method: The solid dispersion of repaglinide was prepared by solvent evaporation method using the hydrophilic carrier, polyethylene glycol 4000 (PEG 4000) in three drug:PEG 4000 ratios (1:1, 1:3, 1:5). For comparison, physical mixtures of repaglinide and PEG 4000 in the same ratios were also prepared. The formulations were characterized by Fourier transformed infrared spectroscopy (FTIR), x-ray diffractometry (XRD) and differential scanning colorimetry (DSC). Phase solubility study of pure repaglinide, physical mixture and solid dispersion was performed in distilled water. Dissolution studies were carried out in pH 7.4 phosphate buffer. Results: DSC and XRD results indicate that repaglinide exists in amorphous form in solid dispersion. FT-IR analysis demonstrated the presence of intermolecular hydrogen bonding between repaglinide and PEG 4000 in the solid dispersion. The solubility of pure repaglinide was enhanced from 22.5± 5.0 to 235.5± 5.0 µg/mL in distilled water at 37 0C. Rapid burst release (80 - 86 %) from the solid dispersion formulations was observed within 15 min. Conclusion: The solubility and dissolution rate of repaglinide are enhanced by formulating SDs of repaglinide with PEG 4000. This will likely lead to increase in bioavailability which would be beneficial for better glucose control in diabetic patients.
Resumo:
degli elementi vegetali nella dinamica e nella dispersione degli inquinanti nello street canyon urbano. In particolare, è stato analizzata la risposta fluidodinamica di cespugli con altezze diverse e di alberi con porosità e altezza del tronco varianti. Il modello analizzato consiste in due edifici di altezza e larghezza pari ad H e lunghezza di 10H, tra i quali corre una strada in cui sono stati modellizati una sorgente rappresentativa del traffico veicolare e, ai lati, due linee di componenti vegetali. Le simulazioni sono state fatte con ANSYS Fluent, un software di "Computational Fluid Dynamics"(CFD) che ha permesso di modellizare la dinamica dei flussi e di simulare le concentrazioni emesse dalla sorgente di CO posta lungo la strada. Per la simulazione è stato impiegato un modello RANS a chiusura k-epsilon, che permette di parametrizzare i momenti secondi nell'equazione di Navier Stokes per permettere una loro più facile risoluzione. I risultati sono stati espressi in termini di profili di velocità e concentrazione molare di CO, unitamente al calcolo della exchange velocity per quantificare gli scambi tra lo street canyon e l'esterno. Per quanto riguarda l'influenza dell'altezza dei tronchi è stata riscontrata una tendenza non lineare tra di essi e la exchange velocity. Analizzando invece la altezza dei cespugli è stato visto che all'aumentare della loro altezza esiste una relazione univoca con l'abbassamento della exchange velocity. Infine, andando a variare la permeabilità delle chiome degli alberi è stata trovatta una variazione non monotonica che correla la exchange velocity con il parametro C_2, che è stata interpretata attraverso i diversi andamenti dei profili sopravento e sottovento. In conclusione, allo stadio attuale della ricerca presentata in questa tesi, non è ancora possibile correlare direttamente la exchange velocity con alcun parametro analizzato.
Resumo:
As nuclear energy systems become more advanced, the materials encompassing them need to perform at higher temperatures for longer periods of time. In this Master’s thesis we experiment with an oxide dispersion strengthened (ODS) austenitic steel that has been recently developed. ODS materials have a small concentration of nano oxide particles dispersed in their matrix, and typically have higher strength and better extreme temperature creep resistance characteristics than ordinary steels. However, no ODS materials have ever been installed in a commercial power reactor to date. Being a newer research material, there are many unanswered phenomena that need to be addressed regarding the performance under irradiation. Furthermore, due to the ODS material traditionally needing to follow a powder metallurgy fabrication route, there are many processing parameters that need to be optimized before achieving a nuclear grade material specification. In this Master’s thesis we explore the development of a novel ODS processing technology conducted in Beijing, China, to produce solutionized bulk ODS samples with ~97% theoretical density. This is done using relatively low temperatures and ultra high pressure (UHP) equipment, to compact the mechanically alloyed (MA) steel powder into bulk samples without any thermal phase change influence or oxide precipitation. By having solutionized bulk ODS samples, transmission electron microscopy (TEM) observation of nano oxide precipitation within the steel material can be studied by applying post heat treatments. These types of samples will be very useful to the science and engineering community, to answer questions regarding material powder compacting, oxide synthesis, and performance. Subsequent analysis performed at Queen’s University included X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additional TEM in-situ 1MeV Kr2+ irradiation experiments coupled with energy dispersive X-ray (EDX) techniques, were also performed on large (200nm+) non-stoichiometric oxides embedded within the austenite steel grains, in an attempt to quantify the elemental compositional changes during high temperature (520oC) heavy ion irradiation.
Resumo:
The permeability of dispersion barriers produced from polyvinyl alcohol (PVOH) and kaolin clay blends coated onto polymeric supports has been studied by employing two different measurement methods: the oxygen transmission rate (OTR) and the ambient oxygen ingress rate (AOIR). Coatings with different thicknesses and kaolin contents were studied. Structural information of the dispersion-barrier coatings was obtained by Fourier transform infrared spectroscopy (FTIR) spectroscopy and scanning electron microscopy (SEM). These results showed that the kaolin content influences both the orientation of the kaolin and the degree of crystallinity of the PVOH coating. Increased kaolin content increased the alignment of the kaolin platelets to the basal plane of the coating. Higher kaolin content was accompanied by higher degree of crystallinity of the PVOH. The barrier thickness proved to be less important in the early stages of the mass transport process, whereas it had a significant influence on the steady-state permeability. The results from this study demonstrate the need for better understanding of how permeability is influenced by (chemical and physical) structure.
Resumo:
We consider a conservation law perturbed by a linear diffusion and a general form of non-positive dispersion. We prove the convergence of the corresponding solution to the entropy weak solution of the hyperbolic conservation law.
Resumo:
The past few decades have seen major impacts of different pandemics and mass casualty events on health resource use in terms of rising health cost and increased mortality.