963 resultados para iInfrared microscopy
Resumo:
La reconstruction en deux étapes par expanseur et implant est la technique la plus répandue pour la reconstruction mammmaire post mastectomie. La formation d’une capsule périprothétique est une réponse physiologique universelle à tout corps étranger présent dans le corps humain; par contre, la formation d’une capsule pathologique mène souvent à des complications et par conséquent à des résultats esthétiques sous-optimaux. Le microscope électronique à balayage (MEB) est un outil puissant qui permet d’effectuer une évaluation sans pareille de la topographie ultrastructurelle de spécimens. Le premier objectif de cette thèse est de comparer le MEB conventionnel (Hi-Vac) à une technologie plus récente, soit le MEB environnemental (ESEM), afin de déterminer si cette dernière mène à une évaluation supérieure des tissus capsulaires du sein. Le deuxième objectif est d‘appliquer la modalité de MEB supérieure et d’étudier les modifications ultrastructurelles des capsules périprothétiques chez les femmes subissant différents protocoles d’expansion de tissus dans le contexte de reconstruction mammaire prothétique. Deux études prospectives ont été réalisées afin de répondre à nos objectifs de recherche. Dix patientes ont été incluses dans la première, et 48 dans la seconde. La modalité Hi-Vac s’est avérée supérieure pour l’analyse compréhensive de tissus capsulaires mammaires. En employant le mode Hi-Vac dans notre protocole de recherche établi, un relief 3-D plus prononcé à été observé autour des expanseurs BIOCELL® dans le groupe d’approche d’intervention retardée (6 semaines). Des changements significatifs n’ont pas été observés au niveau des capsules SILTEX® dans les groupes d’approche d’intervention précoce (2 semaines) ni retardée.
Resumo:
Healthcare-associated infections (HAI) are a major public health problem being Klebsiella pneumoniae and nontuberculous mycobacteria, both with high antibiotic resistance rates, among their etiological agent. Since biofilme assembly is pointed as one of the mechanisms involved in emergence of antibiotic resistance understanding bacteria organization within the biofilm and the identification of differences between planktonic and sessile forms of bacteria will be a step forward to fight HAI. In the present work we used SEM as a tool to characterize the internal structure of biofilm assembled on different surfaces. For SEM analysis, biofilms were allowed to form either on six-well cell culture plates, silicon or metallic disks placed inside the wells for different incubation periods at 37 °C. The biofilm assembled on the cell culture dish was for both secondary and backscattered electron analysis as described before. Biofilms assembled on silicon disks instead of being sectioned were prepared as metallographic samples, by grinding with grit SIC paper and polishing with diamond particles. Samples were cleaned (70% ethanol), dried with hot air, further coated and analysed. A preliminary study using FIB-SEM has been performed to access the ultrastructure of biofilms assembled on metallic surfaces. The results obtained showed that the same bacteria assembled biofilms with different ratios of biomass and extracellular matrix depending on the surface. SEM performed on thin sections of biofilms is a powerful tool to elucidate biofilm structure allowing the quantification of the major components. FIB-SEM is also a promising tool in this field.
Resumo:
BACKGROUND Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. OBJECTIVE To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. APPROACH & RESULTS Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including "graph energy" and "distance to farthest node". The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. CONCLUSIONS The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.
Resumo:
Reactive lymph nodes (LNs) are sites where pMHC-loaded dendritic cells (DCs) interact with rare cognate T cells, leading to their clonal expansion. While DC interactions with T cell subsets critically shape the ensuing immune response, surprisingly little is known on their spatial orchestration at physiologically T cell low precursor frequencies. Light sheet fluorescence microscopy and one of its implementations, selective plane illumination microscopy (SPIM), is a powerful method to obtain precise spatial information of entire organs of 0.5-10mm diameter, the size range of murine LNs. Yet, its usefulness for immunological research has thus far not been comprehensively explored. Here, we have tested and defined protocols that preserve fluorescent protein function during lymphoid tissue clearing required for SPIM. Reconstructions of SPIM-generated 3D data sets revealed that calibrated numbers of adoptively transferred T cells and DCs are successfully detected at a single cell level within optically cleared murine LNs. Finally, we define parameters to quantify specific interactions between antigen-specific T cells and pMHC-bearing DCs in murine LNs. In sum, our studies describe the successful application of light sheet fluorescence microscopy to immunologically relevant tissues.
Resumo:
Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.
Resumo:
Prepared by Ontario Research Foundation, under contract no. 68-03-2389.
Resumo:
Paper presented at Royal Microscopical Society's celebration of the "Tercentenary of the Microscope in Living Biology," April 9, 1963, Bethesda, Maryland.
Resumo:
"Contract no. AF 49 (638)-748. Division file 30-4. AFOSR-2273."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.