948 resultados para hypothalamic differentiation
C/EBPɛ mediates myeloid differentiation and is regulated by the CCAAT displacement protein (CDP/cut)
Resumo:
Neutrophils from CCAAT enhancer binding protein epsilon (C/EBPɛ) knockout mice have morphological and biochemical features similar to those observed in patients with an extremely rare congenital disorder called neutrophil-specific secondary granule deficiency (SGD). SGD is characterized by frequent bacterial infections attributed, in part, to the lack of neutrophil secondary granule proteins (SGP). A mutation that results in loss of functional C/EBPɛ activity has recently been described in an SGD patient, and has been postulated to be the cause of the disease in this patient. We have previously demonstrated that overexpression of CCAAT displacement protein (CDP/cut), a highly conserved transcriptional repressor of developmentally regulated genes, suppresses expression of SGP genes in 32Dcl3 cells. This phenotype resembles that observed in both C/EBPɛ−/− mice and in SGD patients. Based on these observations we investigated potential interactions between C/EBPɛ and CDP/cut during neutrophil maturation. In this study, we demonstrate that inducible expression of C/EBPɛ in 32Dcl3/tet cells results in granulocytic differentiation. Furthermore, Northern blot analysis of G-CSF-induced CDP/cut overexpressing 32Dcl3 cells revealed absence of C/EBPɛ mRNA. We therefore hypothesize that C/EBPɛ positively regulates SGP gene expression, and that C/EBPɛ is itself negatively regulated by CDP/cut during neutrophil maturation. We further demonstrate that the C/EBPɛ promoter is regulated by CDP/cut during myeloid differentiation.
Resumo:
Whereas adult sex differences in brain morphology and behavior result from developmental exposure to steroid hormones, the mechanism by which steroids differentiate the brain is unknown. Studies to date have described subtle sex differences in levels of proteins and neurotransmitters during brain development, but these have lacked explanatory power for the profound sex differences induced by steroids. We report here a major divergence in the response to injection of the γ-aminobutyric acid type A (GABAA) agonist, muscimol, in newborn male and female rats. In females, muscimol treatment primarily decreased the phosphorylation of cAMP response element binding protein (CREB) within the hypothalamus and the CA1 region of the hippocampus. In contrast, muscimol increased the phosphorylation of CREB in males within these same brain regions. Within the arcuate nucleus, muscimol treatment increased the phosphorylation of CREB in both females and males. Thus, the response to GABA can be excitatory or inhibitory on signal-transduction pathways that alter CREB phosphorylation depending on the sex and the region in developing brain. This divergence in response to GABA allows for a previously unknown form of steroid-mediated neuronal plasticity and may be an initial step in establishing sexually dimorphic signal-transduction pathways in developing brain.
Resumo:
Runx (Cbfa/AML) transcription factors are critical for tissue-specific gene expression. A unique targeting signal in the C terminus directs Runx factors to discrete foci within the nucleus. Using Runx2/CBFA1/AML3 and its essential role in osteogenesis as a model, we investigated the fundamental importance of fidelity of subnuclear localization for tissue differentiating activity by deleting the intranuclear targeting signal via homologous recombination. Mice homozygous for the deletion (Runx2ΔC) do not form bone due to maturational arrest of osteoblasts. Heterozygotes do not develop clavicles, but are otherwise normal. These phenotypes are indistinguishable from those of the homozygous and heterozygous null mutants, indicating that the intranuclear targeting signal is a critical determinant for function. The expressed truncated Runx2ΔC protein enters the nucleus and retains normal DNA binding activity, but shows complete loss of intranuclear targeting. These results demonstrate that the multifunctional N-terminal region of the Runx2 protein is not sufficient for biological activity. We conclude that subnuclear localization of Runx factors in specific foci together with associated regulatory functions is essential for control of Runx-dependent genes involved in tissue differentiation during embryonic development.