1000 resultados para hyper-frequency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we show that a multilayer freestanding slot array can be designed to give an insertion loss which is significantly lower than the value obtainable from a conventional dielectric backed printed frequency selective surface (FSS). This increase in filter efficiency is highlighted by comparing the performance of two structures designed to provide frequency selective beamsplitting in the quasioptical feed train of a submillimeter wave space borne radiometer. A two layer substrateless FSS providing more than 20 dB of isolation between the bands 316.5â??325.5 GHz and 349.5â??358.5 GHz, gives an insertion loss of 0.6 dB when the filter is orientated at 45 incidence in the TM plane, whereas the loss exhibited by a conventional printed FSS is in excess of 2 dB. A similar frequency response can be obtained in the TE plane, but here a triple screen structure is required and the conductor loss is shown to be comparable to the absorption loss of a dielectric backed FSS. Experimental devices have been fabricated using a precision micromachining technique. Transmission measurements performed in the range 250â??360 GHz are in good agreement with the simulated spectral performance of the individual periodic screens and the two multilayer freestanding FSS structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of a low loss quasi-optical beam splitter which is required to provide efficient diplexing of the bands 316.5-325.5 GHz and 349.5-358.5 GHz is presented. To minimise the filter insertion loss, the chosen architecture is a three-layer freestanding array of dipole slot elements. Floquet modal analysis and finite element method computer models are used to establish the geometry of the periodic structure and to predict its spectral response. Two different micromachining approaches have been employed to fabricate close packed arrays of 460 mm long elements in the screens that form the basic building block of the 30mm diameter multilayer frequency selective surface. Comparisons between simulated and measured transmission coefficients for the individual dichroic surfaces are used to determine the accuracy of the computer models and to confirm the suitability of the fabrication methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the mechanisms proposed for heating the corona above solar active regions is the damping of magnetohydrodynamic (MHD) waves. Continuing on previous work, we provide observational evidence for the existence of high-frequency MHD waves in coronal loops observed during the August 1999 total solar eclipse. A wavelet analysis is used to identify twenty 4 x 4 arcsec(2) areas showing intensity oscillations. All detections lie in the frequency range 0.15 - 0.25 Hz (7 - 4 s), last for at least 3 periods at a confidence level of more than 99% and arise just outside known coronal loops. This leads us to suggest that they occur in low emission-measure or different temperature loops associated with the active region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Solar Eclipse Corona Imaging System (SECIS) was used to record high-cadence observations of the solar corona during the total solar eclipse of 1999 August 11. During the 2 min 23.5 s of totality, 6364 images were recorded simultaneously in each of the two channels: a white light channel, and the Fe xiv (5303 Angstrom) 'green line' channel (T similar to2 MK). Here we report initial results from the SECIS experiment, including the discovery of a 6-s intensity oscillation in an active region coronal loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially resolved measurements of the atomic oxygen densities close to a sample surface in a dual mode (capacitive/inductive) rf plasma are used to measure the atomic oxygen surface loss coefficient beta on stainless steel and aluminum substrates, silicon and silicon dioxide wafers, and on polypropylene samples. beta is found to be particularly sensitive to the gas pressure for both operating modes. It is concluded that this is due to the effect of changing atom and ion flux to the surface. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionization dynamics of H2 + exposed to high-intensity, high-frequency, ultrashort laser pulses is investigated with two theoretical approaches. The time-dependent Schrödinger equation is solved by a direct numerical method, and a simple two-center interference-diffraction model is studied. The energy and angular distributions of the photoelectron for various internuclear distances and relative orientations between the internuclear axis of the molecule and the polarization of the field are calculated. The main features of the photoelectron spectrum pattern are described well by the interference-diffraction model, and excellent quantitative agreement between the two methods is found. The effect of quantal vibration on the photoelectron spectrum is also calculated. We find that vibrational average produces some broadening of the main features, but that the patterns remain clearly distinguishable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An industrial, confined, dual frequency, capacitively coupled, radio-frequency plasma etch reactor Exelan®, Lam Research has been modified for spatially resolved optical measurements. Space and phase resolved optical emission spectroscopy yields insight into the dynamics of the discharge. A strong coupling of the two frequencies is observed in the emission profiles. Consequently, the ionization dynamics, probed through excitation, is determined by both frequencies. The control of plasma density by the high frequency is, therefore, also influenced by the low frequency. Hence, separate control of plasma density and ion energy is rather complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed electrical measurements on sands flushed with bacterial suspensions of varying concentration. The first experiment was conducted with Shewanella putrefaciens (biomass 0â??0.5 mg/L) and the second with Escherichia coli (biomass 0â??42 mg/L). We measured a biomass-dependent low-frequency (10 Hz) polarization. At cell density 12 mg/L polarization increased (up to 15%). We attribute the decrease in polarization at low cell density to alteration of the mineral-fluid interface due to mineral-cell interactions. The polarization enhancement at higher cell density is possibly a pore throat mechanism resulting from decreased ionic mobility and/or electron transfer due to cell accumulation in pores.