975 resultados para historical energy transitions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaiis transitions of As-Se glasses have been investigated over a wide range of compositions by using differential scanning calorimetry. The variation of Tg with composition has been interpreted on the basis of a bond-lattice model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to several environmental problems such as aquatic and terrestrial eutrophication. Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. The multiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using substance flow analysis (SFA) in the following four subsystems: I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical development of the N and P flows was investigated in the energy system (III) and the municipal waste system (IV). The main research sources were official statistics, literature, monitoring data, and expert knowledge. The aim was to identify and quantify the main flows of N and P in Finland in the four subsystems studied. Furthermore, the aim was to elucidate whether the nutrient systems are cyclic or linear, and to identify how these systems could be more efficient in the use and cycling of N and P. A final aim was to discuss how this type of an analysis can be used to support decision-making on environmental problems and solutions. Of the four subsystems, the food production and consumption system and the energy system created the largest N flows in Finland. For the creation of P flows, the food production and consumption system (Paper II) was clearly the largest, followed by the forest industry and use of wood fuels and the energy system. The contribution of Finland to N and P flows on a global scale is low, but when compared on a per capita basis, we are one of the largest producers of these flows, with relatively high energy and meat consumption being the main reasons. Analysis revealed the openness of all four systems. The openness is due to the high degree of internationality of the Finnish markets, the large-scale use of synthetic fertilizers and energy resources and the low recycling rate of many waste fractions. Reduction in the use of fuels and synthetic fertilizers, reorganization of the structure of energy production, reduced human intake of nutrients and technological development are crucial in diminishing the N and P flows. To enhance nutrient recycling and replace inorganic fertilizers, recycling of such wastes as wood ash and sludge could be promoted. SFA is not usually sufficiently detailed to allow specific recommendations for decision-making to be made, but it does yield useful information about the relative magnitude of the flows and may reveal unexpected losses. Sustainable development is a widely accepted target for all human action. SFA is one method that can help to analyse how effective different efforts are in leading to a more sustainable society. SFA's strength is that it allows a holistic picture of different natural and societal systems to be drawn. Furthermore, when the environmental impact of a certain flow is known, the method can be used to prioritize environmental policy efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas fermentation using acetogenic bacteria offers a promising route for the sustainable production of low carbon fuels and commodity chemicals from abundant, inexpensive C1 feedstocks including industrial waste gases, syngas, reformed methane or methanol. Clostridium autoethanogenum is a model gas fermenting acetogen that produces fuel ethanol and 2,3-butanediol, a precursor for nylon and rubber. Acetogens have already been used in large scale industrial fermentations, they are ubiquitous and known to play a prominent role in the global carbon cycle. Still, they are considered to live on the thermodynamic edge of life and potential energy constraints when growing on C1 gases pose a major challange for the commercial production of fuels and chemicals. We have developed a systematic platform to investigate acetogenic energy metabolism, exemplified here by experiments contrasting heterotrophic and autotrophic metabolism. The platform is built from complete omics technologies, augmented with genetic tools and complemented by a manually curated genome-scale mathematical model. Together the tools enable the design and development of new, energy efficient pathways and strains for the production of chemicals and advanced fuels via C1 gas fermentation. As a proof-of-platform, we investigated heterotrophic growth on fructose versus autotrophic growth on gas that demonstrate the role of the Rnf complex and Nfn complex in maintaining growth using the Wood–Ljungdahl pathway. Pyruvate carboxykinase was found to control the rate-limiting step of gluconeogenesis and a new specialized glyceraldehyde-3-phosphate dehydrogenase was identified that potentially enhances anabolic capacity by reducing the amount of ATP consumed by gluconeogenesis. The results have been confirmed by the construction of mutant strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deviations from the usual R (-6) dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non R (-6) type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene,two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Provision of modern energy services for cooking (with gaseous fuels)and lighting (with electricity) is an essential component of any policy aiming to address health, education or welfare issues; yet it gets little attention from policy-makers. Secure, adequate, low-cost energy of quality and convenience is core to the delivery of these services. The present study analyses the energy consumption pattern of Indian domestic sector and examines the urban-rural divide and income energy linkage. A comprehensive analysis is done to estimate the cost for providing modern energy services to everyone by 2030. A public-private partnership-driven business model, with entrepreneurship at the core, is developed with institutional, financing and pricing mechanisms for diffusion of energy services. This approach, termed as EMPOWERS (entrepreneurship model for provision of wholesome energy-related basic services), if adopted, can facilitate large-scale dissemination of energy-efficient and renewable technologies like small-scale biogas/biofuel plants, and distributed power generation technologies to provide clean, safe, reliable and sustainable energy to rural households and urban poor. It is expected to integrate the processes of market transformation and entrepreneurship development involving government, NGOs, financial institutions and community groups as stakeholders. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employ a fluctuation-based technique to investigate the athermal component associated with martensite phase transition, which is a prototype of temperature-driven structural transformation. Statistically, when the phase transition is purely athermal, we find that the temporal sequence of avalanches under constant drive is insensitive to the drive rate. We have used fluctuations in electrical resistivity or noise in nickel titanium shape memory alloys in three different forms: a thin film exhibiting well-defined transition temperatures,a highly disordered film, and a bulk wire of rectangular cross-section. Noise is studied in the realm of dynamic transition,viz.while the temperature is being ramped, which probes into the kinetics of the transformation at real time scales,and could probably stand out as a promising tool for material testing in various other systems, including nanoscale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is concerned with a study on the energy absorption behavior of polyurethane (PU) foams such as flexible high resilience (HR), flexible viscoelastic (VE) and semi-rigid (SR) foams as a function of the overall foam density. Foam samples were prepared in the form of cubes by mixing appropriate polyol and isocyanate compounds produced by Huntsman International India Pvt. Ltd. in varying proportions leading to a range of densities for each type of foam. The cubical samples were tested under compressive load in a standard UTM. Based on the measured load-displacement behaviors, variations of peak load and energy-absorption attributes with respect to density are plotted for each type of foam and the possible existence of an optimum foam density is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The most common pathway to development of diabetes foot ulcers is repetitive daily activity stress on the plantar surface of the neuropathic foot. Studies suggest an association between different diabetic foot complications and physical activity. However, to the best of the authors knowledge the steps/day and sleep patterns of people with diabetic foot ulcers has yet to be investigated. This observational study aims to investigate the physical activity and sleep patterns of three groups of adults with type 2 diabetes and different foot complications Methods Participants with type 2 diabetes were recruited into three groups: 1. those with no reported foot complications (DNIL), 2. those with diagnosis of neuropathy (DPN) and 3. those with a neuropathic ulcer (DFU). Exclusion criteria included peripheral arterial disease and mobility aid use. Participants wore a SenseWear Pro 3 Armband continuously for 7 days and completed an Epworth Sleepiness Scale. The Armband is a validated automated measure of activity (walking steps, average Metabolic Equivalent Task (MET), physical activity (>3 METs) duration), energy expenditure(kJ) (total and physical activity (>3 METs)) and sleep (duration). Data on age, sex, BMI, diabetes duration and HbA1c were also collected. Results Sixty-Six (14 DNIL, 22 DPN and 30 DFU's participants were recruited; 71% males, mean age 61(±12) years, diabetes duration 13(±9) years, HbA1c 8.3(±2.8), BMI 32.6(±5.9), average METs 1.2(0.2). Significant differences were reported in mean(SD) steps/day (5,859(±2,381) in DNIL; 5,007(±3,349) in DPN and 3,271(±2,417) in DFU's and daily energy expenditure (10,868(±1,307)kJ in DNIL; 11,060(±1,916)kJ in DPN and 13,006(± 3,559) in DFU's(p <0.05). No significant differences were reported for average METs, physical activity duration or energy expenditure, sleep time or Epworth score (p>0.1). Conclusions Preliminary findings suggest people with diabetes are sedentary. Results indicate that patients with a diabetic foot ulcer work significantly less than those with neuropathy or nil complications and use significantly more energy to do so. Sleep Parameters showed no differences. Recruitment is still on going.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10(-7). In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of llostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein esponsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that a magnetic-pressure-dominated, supersonic jet which expands (or contracts) in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to take place, the effective reconnection time must be a fraction ɛ ⪉ 1 of the expansion time. The amount of energy dissipation is calculated, and it is concluded that magnetic energy dissipation could, in principle, power the observed synchrotron emission in extragalactic radio jets such as NGC 6251. However, this mechanism is only viable if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rammed earth walls are low carbon emission and energy efficient alternatives to load bearing walls. Large numbers of rammed earth buildings have been constructed in the recent past across the globe. This paper is focused on embodied energy in cement stabilised rammed earth (CSRE) walls. Influence of soil grading, density and cement content on compaction energy input has been monitored. A comparison between energy content of cement and energy in transportation of materials, with that of the actual energy input during rammed earth compaction in the actual field conditions and the laboratory has been made. Major conclusions of the investigations are (a) compaction energy increases with increase in clay fraction of the soil mix and it is sensitive to density of the CSRE wall, (b) compaction energy varies between 0.033 MJ/m(3) and 0.36 MJ/m(3) for the range of densities and cement contents attempted, (c) energy expenditure in the compaction process is negligible when compared to energy content of the cement and (d) total embodied energy in CSRE walls increases linearly with the increase in cement content and is in the range of 0.4-0.5 GJ/m(3) for cement content in the rage of 6-8%. (C) 2009 Elsevier B.V. All rights reserved.