997 resultados para histamine release inhibitor
Resumo:
The Bcr-Abl kinase inhibitor, STI571, is the first line treatment for chronic myeloid leukaemia (CML), but the recent emergence of STI571 resistance has led to the examination of combination therapies. In this report, we describe how a novel non-toxic G1-arresting compound, pyrrolo-1,5-benzoxazepine (PBOX)-21, potentiates the apoptotic ability of STI571 in Bcr-Abl-positive CML cells. Co-treatment of CML cells with PBOX-21 and STI571 induced more apoptosis than either drug alone in parental (K562S and LAMA84) and STI571-resistant cells lines (K562R). This potentiation of apoptosis was specific to Bcr-Abl-positive leukaemia cells with no effect observed on Bcr-Abl-negative HL-60 acute myeloid leukaemia cells. Apoptosis induced by PBOX-21/STI571 resulted in activation of caspase-8, cleavage of PARP and Bcl-2, upregulation of the pro-apoptotic protein Bim and a downregulation of Bcr-Abl. Repression of proteins involved in Bcr-Abl transformation, the anti-apoptotic proteins Mcl-1 and Bcl-(XL) was also observed. The combined lack of an early change in mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9 suggests that this pathway is not involved in the initiation of apoptosis by PBOX-21/STI571. Apoptosis was significantly reduced following pre-treatment with either the general caspase inhibitor Boc-FMK or the chymotrypsin-like serine protease inhibitor TPCK, but was completely abrogated following pre-treatment with a combination of these inhibitors. This demonstrates the important role for each of these protease families in this apoptotic pathway. In conclusion, our data highlights the potential of PBOX-21 in combination with STI571 as an effective therapy against CML.
Resumo:
The non-covalent incorporation of responsive luminescent lanthanide, Ln(iii), complexes with orthogonal outputs from Eu(iii) and Tb(iii) in a gel matrix allows for in situ logic operation with colorimetric outputs. Herein, we report an exemplar system with two inputs ([H(+)] and [F(-)]) within a p(HEMA-co-MMA) polymer organogel acting as a dual-responsive device and identify future potential for such systems.
Resumo:
As key molecules that drive progression and chemoresistance in gastrointestinal cancers, epidermal growth factor receptor (EGFR) and HER2 have become efficacious drug targets in this setting. Lapatinib is an EGFR/HER2 kinase inhibitor suppressing signaling through the RAS/RAF/MEK (MAP/ERK kinase)/MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase)/AKT pathways. Histone deacetylase inhibitors (HDACi) are a novel class of agents that induce cell cycle arrest and apoptosis following the acetylation of histone and nonhistone proteins modulating gene expression and disrupting HSP90 function inducing the degradation of EGFR-pathway client proteins. This study sought to evaluate the therapeutic potential of combining lapatinib with the HDACi panobinostat in colorectal cancer (CRC) cell lines with varying EGFR/HER2 expression and KRAS/BRAF/PIK3CA mutations. Lapatinib and panobinostat exerted concentration-dependent antiproliferative effects in vitro (panobinostat range 7.2-30 nmol/L; lapatinib range 7.6-25.8 μmol/L). Combined lapatinib and panobinostat treatment interacted synergistically to inhibit the proliferation and colony formation in all CRC cell lines tested. Combination treatment resulted in rapid induction of apoptosis that coincided with increased DNA double-strand breaks, caspase-8 activation, and PARP cleavage. This was paralleled by decreased signaling through both the PI3K and MAPK pathways and increased downregulation of transcriptional targets including NF-κB1, IRAK1, and CCND1. Panobinostat treatment induced downregulation of EGFR, HER2, and HER3 mRNA and protein through transcriptional and posttranslational mechanisms. In the LoVo KRAS mutant CRC xenograft model, the combination showed greater antitumor activity than either agent alone, with no apparent increase in toxicity. Our results offer preclinical rationale warranting further clinical investigation combining HDACi with EGFR and HER2-targeted therapies for CRC treatment.
Resumo:
Members of the human epidermal receptor (HER) family are frequently associated with aggressive disease and poor prognosis in multiple malignancies. Lapatinib is a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and HER-2. This study evaluated the therapeutic potential of lapatinib, alone and in combination with SN-38, the active metabolite of irinotecan (CPT-11), in colon and gastric cancer cell lines. Concentration-dependent antiproliferative effects of both lapatinib and SN-38 were observed in all colon and gastric cancer cell lines tested but varied significantly between individual cell lines (lapatinib range 0.08-11.7 muM; SN-38 range 3.6-256 nM). Lapatinib potently inhibited the growth of a HER-2 overexpressing gastric cancer cell line and demonstrated moderate activity in gastric and colon cancer cells with detectable HER-2 expression. The combination of lapatinib and SN-38 interacted synergistically to inhibit cell proliferation in all colon and gastric cancer cell lines tested. Cotreatment with lapatinib and SN-38 also resulted in enhanced cell cycle arrest and the induction of apoptosis with subsequent cellular pharmacokinetic analysis demonstrating that lapatinib promoted the increased intracellular accumulation and retention of SN-38 when compared to SN-38 treatment alone. Finally, the combination of lapatinib and CPT-11 demonstrated synergistic antitumor efficacy in the LoVo colon cancer mouse xenograft model with no apparent increase in toxicity compared to CPT-11 monotherapy. These results provide compelling preclinical rationale indicating lapatinib to be a potentially efficacious chemotherapeutic combination partner for irinotecan in the treatment of gastrointestinal carcinomas.