954 resultados para high charge state


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, based on the principles of gauge/gravity duality and considering the so called hydrodynamic limit we compute various charge transport properties for a class of strongly coupled non-relativistic CFTs corresponding to z=2 fixed point whose dual gravitational counter part could be realized as the consistent truncation of certain non-relativistic Dp branes in the non-extremal limit. From our analysis we note that unlike the case for the AdS black branes, the charge diffusion constant in the non-relativistic background scales differently with the temperature. This shows a possible violation of the universal bound on the charge conductivity to susceptibility ratio in the context of non-relativistic holography. (C) 2015 The Author. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intramolecular S center dot center dot center dot O chalcogen bonding and its potential to lock molecular conformation have been examined in the crystal forms of sulfamethizole, a sulfonamide antibiotic. Molecular complexes of sulfamethizole, including salts and cocrystal, have been synthesized, and their crystal structures were analyzed in order to examine the possible conformational preferences of the molecule in various ionic states and supramolecular environments (neutral/cocrystal, anionic salt, and cationic salt forms). The electrostatic potential mapped on Hirshfeld surfaces generated for these crystal forms provides insights into the possible binding modes of the drug in different environments. Further, the observed conformation locking feature has been rationalized in terms of the experimental charge density features of the intramolecular S center dot center dot O chalcogen bonding in sulfamethizole. The study quantitatively illustrates and rationalizes an intriguing case of a local minimum of molecular conformation being exclusively preferred over the global minimum, as it facilitates more efficient intermolecular interactions in a supramolecular environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A graphene and zinc oxide nanowires (G/ZnO NWs) based ultraviolet (UV) photodetector presents excellent responsivity and photocurrent gain with detectivity. Graphene due to higher charge carrier transport mobility induces faster response to UV illumination at the interface between ZnO and graphene with improved response and decay times as compared to a ZnO NWs device alone. A linear increase is revealed for both the responsivity and photocurrent gain of the G/ZnO NWs device with the applied bias. These results suggest that the G/ZnO NWs device exhibits great promise for highly efficient UV photodetectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, semisolid manufacturing has emerged as an attractive option for near net shape forming of components with aluminum alloys. In this class of processes, the key to success lies mainly in the understanding of rheological behavior of the semi-solid slurry in the temperature range between liquidus and solidus. The present study focuses on the non-Newtonian flow behavior of the pseudo plastic slurry of Al-7Si-0.3Mg alloy for a wide shear range using a high-temperature Searle-type rheometer. The rheological behavior of the slurry is studied with respect to relevant process variables and microstructural features such as shear rate, shear duration, temperature history, primary particle size, shape, and their distribution. The experiments performed are isothermal tests, continuous cooling tests, shear jump tests, and shear time tests. The continuous cooling experiments are aimed toward studying the viscosity and shear stress evolution within the slurry matrix with increasing solid fraction at a constant shear rate. Three different cooling rates are considered and their effect on flow behavior of the slurry was studied under iso-shear condition. Descending shear jump experiments are performed to understand the viscous instability of the slurry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature T-c approximate to 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO, is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piezoelectric bimorph laminar actuator of tapered width exhibits better performance for out-of-plane deflection compared to the rectangular surface area, while consuming equal surface area. This paper contains electromechanical analysis and modeling of a tapered width piezoelectric bimorph laminar actuator at high electric field in static state. The analysis is based on the second order constitutive equations of piezoelectric material, assuming small strain and large electric field to capture its behavior at high electric field. Analytical expressions are developed for block force, output strain energy, output energy density, input electrical energy, capacitance and energy efficiency at high electric field. The analytical expressions show that for fixed length, thickness, and surface area of the actuator, how the block force and output strain energy gets improved in a tapered surface actuator compared to a rectangular surface. Constant thickness, constant length and constant surface area of the actuator ensure constant mass, and constant electrical capacitance. We consider high electric field in both series and parallel electrical connection for the analysis. Part of the analytical results is validated with the experimental results, which are reported in earlier literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By combining first principles density functional theory and electronic as well as lattice Boltzmann transport calculations, we unravel the excellent thermoelectric properties of Zintl phase compounds ACd(2)Sb(2) (where, A = Ca, Ba, Sr). The calculated electronic structures of these compounds show charge carrier pockets and heavy light bands near the band edge, which lead to a large power factor. Furthermore, we report large Gruneisen parameters and low phonon group velocity indicating essential strong anharmonicity in these compounds, which resulted in low lattice thermal conductivity. The combination of low thermal conductivity and the excellent transport properties give a high ZT value of similar to 1.4-1.9 in CaCd2Sb2 and BaCd2Sb2 at moderate p and n-type doping. Our results indicate that well optimized Cd-based Zintl phase compounds have the potential to match the performance of conventional thermoelectric materials.