991 resultados para heat waves
Resumo:
An examination was made of the rate of penetration of heat into fish sausage during processing at 115.6°C. Findings showed processing for 24 minutes to bring about complete destruction of Clostridium botulinum. A processing time of 30 minutes destroys almost all spoilage-causing organisms, thus prolonging the shelf life of the products.
Resumo:
In this study an experimental investigation of baroclinic waves in air in a differentially heated rotating annulus is presented. Air has a Prandtl number of 0.707, which falls within a previously unexplored region of parameter space for baroclinic instability. The flow regimes encountered include steady waves, periodic amplitude vacillations, modulated amplitude vacillations, and either monochromatic or mixed wave number weak waves, the latter being characterized by having amplitudes less than 5% of the applied temperature contrast. The distribution of these flow regimes in parameter space are presented in a regime diagram. It was found that the progression of transitions between different regimes is, as predicted by recent numerical modeling results, in the opposite sense to that usually found in experiments with high Prandtl number liquids. No hysteresis in the flow type, with respect to variations in the rotation rate, was found in this investigation.
Resumo:
Frequency entrainment and nonlinear synchronization are commonly observed between simple oscillatory systems, but their occurrence and behavior in continuum fluid systems are much less well understood. Motivated by possible applications to geophysical fluid systems, such as in atmospheric circulation and climate dynamics, we have carried out an experimental study of the interaction of fully developed baroclinic instability in a differentially heated, rotating fluid annulus with an externally imposed periodic modulation of the thermal boundary conditions. In quasiperiodic and chaotic amplitude-modulated traveling wave regimes, the results demonstrate a strong interaction between the natural periodic modulation of the wave amplitude and the externally imposed forcing. This leads to partial or complete phase synchronization. Synchronization effects were observed even with very weak amplitudes of forcing, and were found with both 1:1 and 1:2 frequency ratios between forcing and natural oscillations.
Resumo:
The authors have attempted to compute the heat balance terms on the basis of formulas by Budyoko (1974). Some of the meteorological and oceanographic data were collected during the Trans Antarctic Expedition (1989-90). These data were supplemented by the data (1956-1988) made available by the national climatic center of NOAA (National Oceanic and Atmospheric Administration). Monthly means of sea surface temperature in Antarctic waters and meteorological data at a station (77°51'S; 166°39'E) 33m above sea level are given.
Resumo:
This paper investigates the interaction of solitary waves (representative of tsunamis) with idealized flat-topped conical islands. The investigation is based on simulations produced by a numerical model that solves the two-dimensional Boussinesq-type equations of Madsen and Sørensen using a total variation diminishing Lax-Wendroff scheme. After verification against published laboratory data on solitary wave run-up at a single island, the numerical model is applied to study the maximum run-up at a pair of identical conical islands located at different spacings apart for various angles of wave attack. The predicted results indicate that the maximum run-up can be attenuated or enhanced according to the position of the second island because of wave refraction, diffraction, and reflection. It is also observed that the local wave height and hence run-up can be amplified at certain gap spacing between the islands, owing to the interference between the incident waves and the reflected waves between islands. © 2012 American Society of Mechanical Engineers.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to high-amplitude acoustic forcing in a laboratory-scale stratified burner operated with CH4 and air at atmospheric pressure. The double-swirler, double-channel annular burner was specially designed to generate high-amplitude acoustic velocity oscillations and a radial equivalence ratio gradient at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the response are not considered in the present investigation. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. Time-averaged and phase-synchronized CH* chemiluminescence intensities were measured using an intensified CCD camera. The measurements show that flame stabilization mechanisms vary depending on equivalence ratio gradients for a constant global equivalence ratio (φg=0.60). Under uniformly premixed conditions, an enveloped M-shaped flame is observed. In contrast, under stratified conditions, a dihedral V-flame and a toroidal detached flame develop in the outer stream and inner stream fuel enrichment cases, respectively. The modification of the stabilization mechanism has a significant impact on the nonlinear response of stratified flames to high-amplitude acoustic forcing (u'/U∼0.45 and f=60, 160Hz). Outer stream enrichment tends to improve the flame's stiffness with respect to incident acoustic/vortical disturbances, whereas inner stream stratification tends to enhance the nonlinear flame dynamics, as manifested by the complex interaction between the swirl flame and large-scale coherent vortices with different length scales and shedding points. It was found that the behavior of the measured flame describing functions (FDF), which depend on radial fuel stratification, are well correlated with previous measurements of the intensity of self-excited combustion instabilities in the stratified swirl burner. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, its effect on flame location and the interaction with unsteady flow structures. © 2011 The Combustion Institute.
Resumo:
This paper considers an additive noise channel where the time-κ noise variance is a weighted sum of the squared magnitudes of the previous channel inputs plus a constant. This channel model accounts for the dependence of the intrinsic thermal noise on the data due to the heat dissipation associated with the transmission of data in electronic circuits: the data determine the transmitted signal, which in turn heats up the circuit and thus influences the power of the thermal noise. The capacity of this channel (both with and without feedback) is studied at low transmit powers and at high transmit powers. At low transmit powers, the slope of the capacity-versus-power curve at zero is computed and it is shown that the heating-up effect is beneficial. At high transmit powers, conditions are determined under which the capacity is bounded, i.e., under which the capacity does not grow to infinity as the allowed average power tends to infinity. © 2009 IEEE.
Resumo:
This paper follows the work of A.V. Shanin on diffraction by an ideal quarter-plane. Shanin's theory, based on embedding formulae, the acoustic uniqueness theorem and spherical edge Green's functions, leads to three modified Smyshlyaev formulae, which partially solve the far-field problem of scattering of an incident plane wave by a quarter-plane in the Dirichlet case. In this paper, we present similar formulae in the Neumann case, and describe a numerical method allowing a fast computation of the diffraction coefficient using Shanin's third modified Smyshlyaev formula. The method requires knowledge of the eigenvalues of the Laplace-Beltrami operator on the unit sphere with a cut, and we also describe a way of computing these eigenvalues. Numerical results are given for different directions of incident plane wave in the Dirichlet and the Neumann cases, emphasising the superiority of the third modified Smyshlyaev formula over the other two. © 2011 Elsevier B.V.