998 resultados para grazing activity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic states of CeO(2), Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) , and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) electrodes have been investigated by X-ray photoelectron spectroscopy as a function of applied potential for oxygen evolution and formic acid and methanol oxidation. Ionically dispersed platinum in Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) is active toward these reactions compared with CeO(2) alone. Higher electrocatalytic activity of Pt(2+) ions in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) compared with the same amount of Pt(0) in Pt/C is attributed to Pt(2+) ion interaction with CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) to activate the lattice oxygen of the support oxide. Utilization of this activated lattice oxygen has been demonstrated in terms of high oxygen evolution in acid medium with these catalysts. Further, ionic platinum in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) does not suffer from CO poisoning effect unlike Pt(0) in Pt/C due to participation of activated lattice oxygen which oxidizes the intermediate CO to CO(2). Hence, higher activity is observed toward formic acid and methanol oxidation compared with same amount of Pt metal in Pt/C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the deoxidation of liquid copper is made by use of an Ellingham-type diagram, which incorporates data now available on interactions between copper and the deoxidant in solution. To make the diagram more quantitative information is required on interactions between oxygen and the deoxidants and the activities of component oxides in slags of interest in copper smelting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid gallium in the temperature range 775 –1125 °C and in liquid gallium-copper alloys at 1100 °C, in equilibrium with β-Ga2O3, has been measured by an isopiestic equilibrium technique. The solubility of oxygen in pure gallium is given by the equation log (at.% O) = −7380/T + 4.264 (±0.03) Using recently measured values for the standard free energy of formation of β-Ga2O3 and assuming that oxygen obeys Sievert's law up to the saturation limit, the standard free energy of solution of oxygen in liquid gallium may be calculated : View the MathML sourceΔ°298 = −52 680 + 6.53T (±200) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which the activity is equal to atomic per cent. The effect of copper on the activity of oxygen dissolved in liquid gallium is found to be in good agreement with that predicted by a recent quasichemical model in which it was assumed that each oxygen is interstitially coordinated to four metal atoms and that the nearest neighbour metal atoms lose approximately half their metallic cohesive energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid indium in the temperature range 650–820 °C and in liquid copper-indium alloys at 1100 °C in equilibrium with indium sesquioxide has been measured by a phase equilibration technique. The solubility of oxygen in pure indium is given by the relation log(at.% O) = −4726/T + 3.73 (±0.08) Using the recently measured values for the standard free energy of formation of In2O3 and assuming that oxygen obeys Sievert's law up to saturation, the standard free energy of solution of molecular oxygen in liquid indium is calculated as View the MathML sourceΔG°= −51 440 + 8.07 T (±500) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which activity is equal to atomic per cent. The effect of indium additions on the activity coefficient of oxygen dissolved in liquid copper was measured by a solid oxide galvanic cell. The interaction parameter ϵ0In is given by View the MathML source The experimentally determined variation of the activity coefficient of oxygen in dilute solution in Cu-In alloys is in fair agreement with that predicted by a quasichemical model in which each oxygen atom is assumed to be interstitially coordinated to four metal atoms and the nearest neighbour metal atoms are assumed to lose approximately half their metallic cohesive energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid germanium in the temperature range 1233 to 1397 K, and in liquid germanium-copper alloys at 1373 K, in equilibrium with GeO2 has been measured by the phase equilibration technique. The solubility of oxygen in pure germanium is given by the relation R470 log(at. pct 0)=-6470/T+4.24 (±0.07). The standard free energy of solution of oxygen in liquid germanium is calculated from the saturation solubility, and recently measured values for the free energy of formation of GeO2, assuming that oxygen obeys Sievert’s law up to the saturation limit. For the reaction, 1/2 O2(g)→ OGe ΔG° =-39,000 + 3.21T (±500) cal = -163,200 + 13.43T (±2100) J. where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct), in the limit, as concentration approaches zero. The effect of copper on the activity of oxygen dissolved in liquid germanium is found to be in good agreement with that predicted by a quasichemical model in which each oxygen was assumed to be bonded to four metal atoms and the nearest neighbor metal atoms to an oxygen atom are assumed to lose approximately half of their metallic bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility limit of oxygen in liquid antimony has been measured by a novel isopiestic technique in the temperature range 995--1175 deg K. The results can be expressed by the equation log c = --5500/T + 3.754 ( plus/minus 0.04) with c in at.% O and T in deg K. The oxygen potential over Sb + O alloys equilibrium with Sb2O3 has been measured by a solid state cell using a fully stabilized CaO.ZrO2 electrolyte. The cell was designed to contain the Sb + Sb2O3 mixture in a closed volume, that the vaporization of the oxide can be minimized and true equilibrium attained. The Gibbs free energy of the reaction 2 Sb(s) + 3/2 O2 = Sb2O3(s) is Delta G deg = --719560 + 274.51 T( plus/minus 500) and Sb(l) + 3/2 O2 = Sb2O3(l), Delta G deg = --704711 + ( plus/minus 500) ( Delta G deg in J/mole, T in deg K). The combination of these results with Sieverts' law yields the standard free energy of solution of oxygen in liquid antimony according to the reaction 1/2 O2 = \O\Sb,at.% as Delta G deg = --129620 + 14.23 T ( plus/minus 950). The standard enthalopy and entropy of the solution of oxygen in Sb are compared with values for other metal- oyxgen systems, and with the standard enthalpies of formation of corresponding oxides. The resulting correlations permit the estimation of the standard free energy of solution of oxygen in pure metals for which experimental information is lacking. 24 ref.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrocenyl terpyridine 3d metal complexes and their analogues, viz. [M(Fc-tpy)(2)](ClO(4))(2) (1-4), [Zn(Ph-tpy)(2)](ClO(4))(2) (5) and [Zn(Fc-dpa)(2)]X(2) (X = ClO(4), 6; PF6, 6a), where M = Fe(II) in 1, Co(II) in 2, Cu(II) in 3 and Zn(II) in 4, Fc-tpy is 4'-ferrocenyl-2,2': 6', 2 `'-terpyridine, Ph-tpy is 4'-phenyl-2,2': 6', 2 `'-terpyridine and Fc-dpa is ferrocenyl-N,N-dipicolylmethanamine, are prepared and their DNA binding and photocleavage activity in visible light studied. Complexes 2, 4, 5 and 6a that are structurally characterized by X-ray crystallography show distorted octahedral geometry with the terpyridyl ligands binding to the metal in a meridional fashion, with Fc-dpa in 6a showing a facial binding mode. The Fc-tpy complexes display a charge transfer band in the visible region. The ferrocenyl (Fc) complexes show a quasi-reversible Fc(+)-Fc redox couple within 0.48 to 0.66 V vs. SCE in DMF-0.1 M TBAP. The DNA binding constants of the complexes are similar to 10(4) M(-1). Thermal denaturation and viscometric data suggest DNA surface binding through electrostatic interaction by the positively charged complexes. Barring the Cu(II) complex 3, the complexes do not show any chemical nuclease activity in the presence of glutathione. Complexes 1-4 exhibit significant plasmid DNA photocleavage activity in visible light via a photoredox pathway. Complex 5, without the Fc moiety, does not show any DNA photocleavage activity. The Zn(II) complex 4 shows a significant PDT effect in HeLa cancer cells giving an IC(50) value of 7.5 mu M in visible light, while being less toxic in the dark (IC(50) = 49 mu M).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen concentration of liquid manganese in equilibrium with MnAl2+2xO4+3x and α−Al2O3 has been determined in the temperature range 1520 to 1875 K. The oxygen content of quenched samples, wrapped in oxygen-free nickel foil, was determined by an inert gas fusion technique. The results are combined with accurate data now available on the Gibbs energies of formation of MnO and Al2O3−saturated MnAl2+2xO4+3x to derive the oxygen content of liquid manganese in equilibrium with MnO and the Gibbs energy of solution of diatomic oxygen gas in liquid manganese. The enthalpy and entropy of solution of oxygen in manganese are compared with similar data on other metal-oxygen systems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solid state e.m.f. cell with yttria-doped thoria as the electrolyte and a mixture of Cr + Cr sub 2 O sub 3 as the reference electrode, was employed for the measurement of the activity of manganese in the Co--Mn system at 1760 deg K, for 0.3 > X sub Mn > 0.05. The liquid alloy was contained in an alumina crucible and saturated with MnAl sub 2+2x O sub 4+3x . The cell can be represented by Pt, W, (Co--Mn) + MnAl sub 2+2x O sub 4+3x + Al sub 2 O sub 3 /ThO sub 2 --Y sub 2 O sub 3 /Cr + Cr sub 2 O sub 3 , Pt. The activity of manganese shows negative deviations from Raoult's law. The activities in the Co--Mn system are intermediate between those in the Fe--Mn and Ni--Mn systems. The Gibbs' energies of mixing in these systems follow the trends given by Miedema's model. 14 ref.--AA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations: log(at. pct O) = \frac - 10,005T + 4.944 ( ±0.015)log(atpctO)=T−10005+4944(0015) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn DmO2 /4.606RT = log P O2 1/2 = \frac - 13,550T + 4.411 ( ±0.009)O24606RT=logPO212=T−13550+4411(0009) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction, $\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$Missing close brace ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 = + 0.216 at. pct OlogfO=T−500+0216atpctO where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of Ti02 in single and two··phase regions of ihe system ZrOrTi02 has heen measured lIsing solid state cells based on yttria··doped tho ria (YDT) as the solid electrolyte at 1373 K. The cells used can be represented as: Pt, Tio.07PtO.Y3 + Zrj.,Tix0 2 / YDT / Ti02 + Tio.07Pto.93, Pt Pt, Tio.07Pto.93 + ZrJ.xTix02 + ZrTi04 / YDT / Ti02+ Tio.07PtO.93, Pt In each cell the composition of Pt-Ti alloy was identical at hoth electrodes. The emf of the cell is therefore directly related to the activity of Ti02 in oxide phase or oxide phase mixture: aTiO~ :;: cxp (-4FE/RT). The activity coefficient of Ti02 in th~ zirconia-rich solid solution with monoclinic structure (CUl2 2" XTi02 2" 0) can be expressed as:In the zirconia-rich solid solution with tetragonal structure (0.085 2" X ri02 2" 0.03), the activity coefficient is given by:In YTi02 (± 0.012) = 2.354 (1-XTiO? )2 +0.064 The standard Gibbs energy of formation of ZrTi04 is -5650 (± 200) J/mol at 1373 K .