986 resultados para granulosa-theca cell tumor
Resumo:
Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4-specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14(++)CD16(-) monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68(+)/CD163(+) macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti-CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients.
Resumo:
Inhibitory receptors (iRs) are frequently associated with "T cell exhaustion". However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as "checkpoint blockade", is showing -unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with "T cell exhaustion" and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are "downtuned" in order to limit tissue damage. Furthermore, we review the novel "checkpoint blockade" treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells.
Resumo:
The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.
Resumo:
Experimental models demonstrated that therapeutic induction of CD8 T cell responses may offer protection against tumors or infectious diseases providing that T cells have sufficiently high TCR/CD8:pMHC avidity for efficient Ag recognition and consequently strong immune functions. However, comprehensive characterization of TCR/CD8:pMHC avidity in clinically relevant situations has remained elusive. In this study, using the novel NTA-His tag-containing multimer technology, we quantified the TCR:pMHC dissociation rates (koff) of tumor-specific vaccine-induced CD8 T cell clones (n = 139) derived from seven melanoma patients vaccinated with IFA, CpG, and the native/EAA or analog/ELA Melan-A(MART-1)(26-35) peptide, binding with low or high affinity to MHC, respectively. We observed substantial correlations between koff and Ca(2+) mobilization (p = 0.016) and target cell recognition (p < 0.0001), with the latter independently of the T cell differentiation state. Our strategy was successful in demonstrating that the type of peptide impacted on TCR/CD8:pMHC avidity, as tumor-reactive T cell clones derived from patients vaccinated with the low-affinity (native) peptide expressed slower koff rates than those derived from patients vaccinated with the high-affinity (analog) peptide (p < 0.0001). Furthermore, we observed that the low-affinity peptide promoted the selective differentiation of tumor-specific T cells bearing TCRs with high TCR/CD8:pMHC avidity (p < 0.0001). Altogether, TCR:pMHC interaction kinetics correlated strongly with T cell functions. Our study demonstrates the feasibility and usefulness of TCR/CD8:pMHC avidity assessment by NTA-His tag-containing multimers of naturally occurring polyclonal T cell responses, which represents a strong asset for the development of immunotherapy.
Resumo:
Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1) and cancer stem cell markers (ABCG2, CD44 and ALDH1) genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7). Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.
Resumo:
Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies.
Resumo:
OBJECTIVE: The goal was to demonstrate that tailored therapy, according to tumor histology and epidermal growth factor receptor (EGFR) mutation status, and the introduction of novel drug combinations in the treatment of advanced non-small-cell lung cancer are promising for further investigation. METHODS: We conducted a multicenter phase II trial with mandatory EGFR testing and 2 strata. Patients with EGFR wild type received 4 cycles of bevacizumab, pemetrexed, and cisplatin, followed by maintenance with bevacizumab and pemetrexed until progression. Patients with EGFR mutations received bevacizumab and erlotinib until progression. Patients had computed tomography scans every 6 weeks and repeat biopsy at progression. The primary end point was progression-free survival (PFS) ≥ 35% at 6 months in stratum EGFR wild type; 77 patients were required to reach a power of 90% with an alpha of 5%. Secondary end points were median PFS, overall survival, best overall response rate (ORR), and tolerability. Further biomarkers and biopsy at progression were also evaluated. RESULTS: A total of 77 evaluable patients with EGFR wild type received an average of 9 cycles (range, 1-25). PFS at 6 months was 45.5%, median PFS was 6.9 months, overall survival was 12.1 months, and ORR was 62%. Kirsten rat sarcoma oncogene mutations and circulating vascular endothelial growth factor negatively correlated with survival, but thymidylate synthase expression did not. A total of 20 patients with EGFR mutations received an average of 16 cycles. PFS at 6 months was 70%, median PFS was 14 months, and ORR was 70%. Biopsy at progression was safe and successful in 71% of the cases. CONCLUSIONS: Both combination therapies were promising for further studies. Biopsy at progression was feasible and will be part of future SAKK studies to investigate molecular mechanisms of resistance.
Resumo:
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer death by 2030. Current therapeutic options are limited, warranting an urgent need to explore innovative treatment strategies. Due to specific microenvironment constraints including an extensive desmoplastic stroma reaction, PDAC faces major metabolic challenges, principally hypoxia and nutrient deprivation. Their connection with oncogenic alterations such as KRAS mutations has brought metabolic reprogramming to the forefront of PDAC therapeutic research. The Warburg effect, glutamine addiction, and autophagy stand as the most important adaptive metabolic mechanisms of cancer cells themselves, however metabolic reprogramming is also an important feature of the tumor microenvironment, having a major impact on epigenetic reprogramming and tumor cell interactions with its complex stroma. We present a comprehensive overview of the main metabolic adaptations contributing to PDAC development and progression. A review of current and future therapies targeting this range of metabolic pathways is provided.
Resumo:
BACKGROUND: Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. METHODS: We performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. RESULTS: Diffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. CONCLUSION: TILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastoma.
Resumo:
BACKGROUND: Several subsets of non-small-cell lung cancer (NSCLC) are defined by molecular alterations acting as tumor drivers, some of them being currently therapeutically actionable. The rat sarcoma (RAS)-rapidly accelerated fibrosarcoma (RAF)-mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway constitutes an attractive potential target, as v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations occur in 2-4% of NSCLC adenocarcinoma. METHODS: Here, we review the latest clinical data on BRAF serine/threonine kinase inhibitors in NSCLC. RESULTS: Treatment of V600E BRAF-mutated NSCLC with BRAF inhibitor monotherapy demonstrated encouraging antitumor activity. Combination of BRAF and MEK inhibitors using dabrafenib and trametinib is under evaluation. Preliminary data suggest superior efficacy compared with BRAF inhibitor monotherapy. CONCLUSION: Targeting BRAF alterations represents a promising new therapeutic approach for a restricted subset of oncogene-addicted NSCLC. Prospect ive trials refining this strategy are ongoing. A next step will probably aim at combining BRAF inhibitors and immunotherapy or alternatively improve a multilevel mitogen-activated protein kinase (MAPK) pathway blockade by combining with ERK inhibitors.
Resumo:
The Snail zinc-finger transcription factors trigger epithelial-mesenchymal transitions (EMTs), endowing epithelial cells with migratory and invasive properties during both embryonic development and tumor progression. During EMT, Snail provokes the loss of epithelial markers, as well as changes in cell shape and the expression of mesenchymal markers. Here, we show that in addition to inducing dramatic phenotypic alterations, Snail attenuates the cell cycle and confers resistance to cell death induced by the withdrawal of survival factors and by pro-apoptotic signals. Hence, Snail favors changes in cell shape versus cell division, indicating that with respect to oncogenesis, although a deregulation/increase in proliferation is crucial for tumor formation and growth, this may not be so for tumor malignization. Finally, the resistance to cell death conferred by Snail provides a selective advantage to embryonic cells to migrate and colonize distant territories, and to malignant cells to separate from the primary tumor, invade, and form metastasis.
Resumo:
Mantle cell lymphoma is a mature lymphoid neoplasm characterized by the t(11;14)(q13;q32) and cyclin D1 overexpression. SOX11 is a transcription factor commonly overexpressed in these tumors but absent in most other mature B-cell lymphomas whose function is not well understood. Experimental studies have shown that silencing of SOX11 in mantle cell lymphoma cells promotes the shift from a mature B cell into an early plasmacytic differentiation phenotype, suggesting that SOX11 may contribute to tumor development by blocking the B-cell differentiation program. The relationship between SOX11 expression and terminal B-cell differentiation in primary mantle cell lymphoma and its relationship to the plasmacytic differentiation observed in occasional cases is not known. In this study we have investigated the terminal B-cell differentiation phenotype in 60 mantle cell lymphomas, 41 SOX11-positive and 19 SOX11-negative. Monotypic plasma cells and lymphoid cells with plasmacytic differentiation expressing cyclin D1 were observed in 7 (37%) SOX11-negative but in none of 41 SOX11-positive mantle cell lymphomas (P<0.001). Intense cytoplasmic expression of a restricted immunoglobulin light chain was significantly more frequent in SOX11-negative than -positive tumors (58 vs 13%) (P=0.001). Similarly, BLIMP1 and XBP1 expression was also significantly more frequent in SOX11-negative than in -positive cases (83 vs 34% and 75 vs 11%, respectively) (P=0.001). However, no differences in the expression of IRF4/MUM1 were observed among these subtypes of mantle cell lymphoma. In conclusion, these results indicate that SOX11-negative mantle cell lymphoma may be a particular subtype of this tumor characterized by more frequent morphological and immunophenotypic terminal B-cell differentiation features that may be facilitated by the absence of SOX11 transcription factor.
Resumo:
Background. Predictive molecular marker analyses are standard of care in order to select non-small cell lung cancer (NSCLC) patients for targeted therapies. The aim of this study was to determine the prevalence of targetable oncogenic driver mutations including EGFR, KRAS, BRAF, HER2, ALK and ROS1 in Switzerland. Methods. Eight Swiss pathology institutions provided retrospective and anonymized data on their predictive molecular marker results performed on NSCLC from January 2012 to December 2014. Clinico-pathological data were recorded including age, gender, histological NSCLC-subtype and specimen type (biopsy, conventional cytology and cell block, respectively) used for molecular analyses. The prevalence of oncogenic mutations were calculated and compared between the centres. Results. A total of 4187 NSCLC were included into the study. The median age was 67 years and 55% were male patients. The tumor specimens for molecular analysis were mostly derived from biopsies (69%), 26% were from conventional cytology specimens and only in 5% from cell blocks. The most prevalent gene mutation was KRAS with 30.6% (range: 27.3-33.9%), followed by EGFR, BRAF and HER2 mutations in 12.2% (range: 10.2-13.1%), 3.9% (range: 2.5-5.6%) and 1.1% (range: 0.9-4.0%), respectively, without significant differences between the eight centers. Concomitant EGFR and KRAS mutations were detected in only 3/2027 NSCLC. In contrast the prevalence of ALK (mean 6.5%, range: 2.8-11.7%) and ROS1 (mean 2.4%, range: 1.5-6.2%) rearrangements varied significantly between centers. Conclusions. The Prevalence of EGFR, KRAS, BRAF and HER2 mutations are well in line with data from other West European populations. Concomitant EGFR, KRAS, BRAF or HER2 mutations are exceptional. ALK FISH results vary significantly between the eight centres. Concomitant ALK FISH positive results in NSCLC harbouring other oncogenic driver mutation have only been observed in two smaller centres, highlighting the difficulty in ALK-FISH interpretation.
Resumo:
BACKGROUND AND PURPOSE: Second mitochondria-derived activator of caspase (SMAC)-mimetics are a new class of targeted drugs that specifically induce apoptotic cancer cell death and block pro-survival signaling by antagonizing selected members of the inhibitor of apoptosis protein (IAP) family. MATERIAL AND METHODS: The present study was designed to investigate the radiosensitizing effect and optimal sequence of administration of the novel SMAC-mimetic Debio 1143 in vitro and in vivo. Apoptosis, alteration of DNA damage repair (DDR), and tumor necrosis factor-alpha (TNF-α) signaling were examined. RESULTS: In vitro, Debio 1143 displayed anti-proliferative activity and enhanced intrinsic radiation sensitivity in 5/6 head and neck squamous cell carcinoma (HNSCC) cell lines in a synergistic manner. In vivo, Debio 1143 dose-dependently radio-sensitized FaDu and SQ20B xenografts, resulting in complete tumor regression in 8/10 FaDu-xenografted mice at the high dose level. At the molecular level, Debio 1143 combined with radiotherapy (RT) induced enhancement of caspase-3 activity, increase in Annexin V-positive cells and karyopyknosis, and increase in TNF-α mRNA levels. Finally, in a neutralization experiment using a TNF-α-blocking antibody and a caspase inhibitor, it was shown that the radiosensitizing effect of Debio 1143 is mediated by caspases and TNF-α. CONCLUSIONS: These results demonstrate that the novel SMAC-mimetic Debio 1143 is a radiosensitizing agent that is worthy of further investigation in clinical trials in combination with radiotherapy.
Resumo:
Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.