984 resultados para geostationary orbit


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the last 30 years the Atomic Force Microscopy became the most powerful tool for surface probing in atomic scale. The Tapping-Mode Atomic Force Microscope is used to generate high quality accurate images of the samples surface. However, in this mode of operation the microcantilever frequently presents chaotic motion due to the nonlinear characteristics of the tip-sample forces interactions, degrading the image quality. This kind of irregular motion must be avoided by the control system. In this work, the tip-sample interaction is modelled considering the Lennard-Jones potentials and the two-term Galerkin aproximation. Additionally, the State Dependent Ricatti Equation and Time-Delayed Feedback Control techniques are used in order to force the Tapping-Mode Atomic Force Microscope system motion to a periodic orbit, preventing the microcantilever chaotic motion

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was developed from the study by Araujo, R.A.N. et al. Stability regions around the components of the triple system 2001 SN263. (Monthly Notices Of The Royal Astronomical Society, 2012, v. 423(4), 3058-3073 p.) where it was studied the stable and unstable regions system (2001 SN263), which is a triple asteroid system, and these are celestial orbiting our sun. Being close to the Earth is characterized as NEA (Near-Earth Asteroids), asteroids and which periodically approach the Earth's orbit, given that there is great interest in the study and exploitation of these objects, it is the key can carry features that contribute to better understand the process of formation of our solar system. Study the dynamics of bodies that govern those systems proves to be greatly attractive because of the mutual gravitational perturbation of bodies and also by external disturbances. Recently, NEA 2001 SN263 was chosen as a target of Aster mission where a probe is sent for this triple system, appearing therefore the need for obtaining information for characterizing stable regions internal and external to the system, with respect to the effects of radiation pressure. First, this study demonstrated that the integrator used showed satisfactory results of the orbital evolution of bodies in accordance with previous studies and also the characterization of stable and unstable regions brought similar results to the study by Araujo et al. (2012). From these results it was possible to carry out the implementation of the radiation pressure in the system in 2001 SN263, in a region close to the central body, where the simulations were carried out, which brought as a result that the regions before being characterized as stable in unstable true for small particles size from 1 to 5 micrometers. So the next orbital region to the central body and the ... ( Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We know that the orbit of a lunar satellite, and consequently its orbital lifetime is mainly inuenced by the gravitational field of the Moon, Earth and Sun. In this text we study the Lunar gravitational potential and its influence on the gravitational field. We adapted a program in order to map the Moon gravitational field. To that end it was necessary to develop a program that allows the simulation and mapping the lunar full potential. Our program was based on the program developed by Hélio Kuga, and adapted to our case (Moon). We used the model proposed by Konopliv et al. 2001, we proposed various degree and order expansions of spherical harmonics that served us to compare and validate our program

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was developed from the study by Araujo, R.A.N. et al. Stability regions around the components of the triple system 2001 SN263. (Monthly Notices Of The Royal Astronomical Society, 2012, v. 423(4), 3058-3073 p.) where it was studied the stable and unstable regions system (2001 SN263), which is a triple asteroid system, and these are celestial orbiting our sun. Being close to the Earth is characterized as NEA (Near-Earth Asteroids), asteroids and which periodically approach the Earth's orbit, given that there is great interest in the study and exploitation of these objects, it is the key can carry features that contribute to better understand the process of formation of our solar system. Study the dynamics of bodies that govern those systems proves to be greatly attractive because of the mutual gravitational perturbation of bodies and also by external disturbances. Recently, NEA 2001 SN263 was chosen as a target of Aster mission where a probe is sent for this triple system, appearing therefore the need for obtaining information for characterizing stable regions internal and external to the system, with respect to the effects of radiation pressure. First, this study demonstrated that the integrator used showed satisfactory results of the orbital evolution of bodies in accordance with previous studies and also the characterization of stable and unstable regions brought similar results to the study by Araujo et al. (2012). From these results it was possible to carry out the implementation of the radiation pressure in the system in 2001 SN263, in a region close to the central body, where the simulations were carried out, which brought as a result that the regions before being characterized as stable in unstable true for small particles size from 1 to 5 micrometers. So the next orbital region to the central body and the ... ( Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We know that the orbit of a lunar satellite, and consequently its orbital lifetime is mainly inuenced by the gravitational field of the Moon, Earth and Sun. In this text we study the Lunar gravitational potential and its influence on the gravitational field. We adapted a program in order to map the Moon gravitational field. To that end it was necessary to develop a program that allows the simulation and mapping the lunar full potential. Our program was based on the program developed by Hélio Kuga, and adapted to our case (Moon). We used the model proposed by Konopliv et al. 2001, we proposed various degree and order expansions of spherical harmonics that served us to compare and validate our program

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the ability of orbital apex crowding volume measurements calculated with multidetector-computed tomography to detect dysthyroid optic neuropathy. METHODS: Ninety-three patients with Graves' orbitopathy were studied prospectively. All of the patients underwent a complete neuro-ophthalmic examination and computed tomography scanning. Volumetric measurements were calculated from axial and coronal contiguous sections using a dedicated workstation. Orbital fat and muscle volume were estimated on the basis of their attenuation values (in Hounsfield units) using measurements from the anterior orbital rim to the optic foramen. Two indexes of orbital muscle crowding were calculated: i) the volumetric crowding index, which is the ratio between soft tissue (mainly extraocular muscles) and orbital fat volume and is based on axial scans of the entire orbit; and ii) the volumetric orbital apex crowding index, which is the ratio between the extraocular muscles and orbital fat volume and is based on coronal scans of the orbital apex. Two groups of orbits (with and without dysthyroid optic neuropathy) were compared. RESULTS: One hundred and two orbits of 61 patients with Graves' orbitopathy met the inclusion criteria and were analyzed. Forty-one orbits were diagnosed with Graves' orbitopathy, and 61 orbits did not have optic neuropathy. The two groups of orbits differed significantly with regard to both of the volumetric indexes (p<0.001). Although both indexes had good discrimination ability, the volumetric orbital apex crowding index yielded the best results with 92% sensitivity, 86% specificity, 81%/94% positive/negative predictive value and 88% accuracy at a cutoff of 4.14. CONCLUSION: This study found that the orbital volumetric crowding index was a more effective predictor of dysthyroid optic neuropathy than previously described computed tomography indexes were.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work employs a set of complementary techniques to investigate the influence of outlying Ru(II) groups on the ground- and excited-state photophysical properties of free-base tetrapyridyl porphyrin (H(2)TPyP). Single pulse and, pulse train Z-scan techniques used M association with laser flash photolysis, absorbance and fluorescence spectroscopy, and fluorescence decay measurements, allowed us to conclude that the presence of outlying Ru(II) groups causes significant changes on both electronic structure and vibrational properties of porphyrin. Such modifications take place mainly due to the activation of. nonradiative decay channels responsible for the emission, quenching, as well as by favoring some vibrational modes in the light absorption process, It is also observed that, differently from what happens when the Ru(II) is placed at the center of the macrocycle, the peripheral groups cause an increase of the intersystem crossing processes, probably due to the structural distortion of the ring that implies a worse spin orbit coupling, responsible for the intersystem crossing mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have done a new analysis of the available observations of the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the occurrence of aliases and the additional bodies-the planets f and g-announced in Vogt et al. (Astrophys J 723:954-965, 2010). Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the habitable zone (HZ) of the star GJ581. This region, for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period a parts per thousand 450 days, but we are judicious about any affirmation concerning this body because its signal is in the threshold of detection and the high period is in a spectral region where the occurrence of aliases is very common. Besides, we outline some dynamical features of the HZ with the dynamical map and point out the role played by some resonances laying there.